General Information of Drug Off-Target (DOT) (ID: OTNXFWY2)

DOT Name HLA class I histocompatibility antigen, B alpha chain (HLA-B)
Synonyms Human leukocyte antigen B; HLA-B
Gene Name HLA-B
UniProt ID
HLAB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1A1M ; 1A1N ; 1A1O ; 1A9B ; 1A9E ; 1AGB ; 1AGC ; 1AGD ; 1AGE ; 1AGF ; 1CG9 ; 1E27 ; 1E28 ; 1HSA ; 1JGD ; 1JGE ; 1K5N ; 1M05 ; 1M6O ; 1MI5 ; 1N2R ; 1OF2 ; 1OGT ; 1SYS ; 1SYV ; 1UXS ; 1UXW ; 1W0V ; 1W0W ; 1XH3 ; 1XR8 ; 1XR9 ; 1ZHK ; 1ZHL ; 1ZSD ; 2A83 ; 2AK4 ; 2AXF ; 2AXG ; 2BSR ; 2BSS ; 2BST ; 2BVO ; 2BVP ; 2BVQ ; 2H6P ; 2HJL ; 2NW3 ; 2NX5 ; 2RFX ; 2YPK ; 2YPL ; 3B3I ; 3B6S ; 3BP4 ; 3BP7 ; 3BW9 ; 3BWA ; 3C9N ; 3CZF ; 3D18 ; 3DTX ; 3DX6 ; 3DX7 ; 3DX8 ; 3DXA ; 3FFC ; 3HCV ; 3KPL ; 3KPM ; 3KPN ; 3KPO ; 3KPP ; 3KPQ ; 3KPR ; 3KPS ; 3KWW ; 3KXF ; 3L3D ; 3L3G ; 3L3I ; 3L3J ; 3L3K ; 3LKN ; 3LKO ; 3LKP ; 3LKQ ; 3LKR ; 3LKS ; 3LN4 ; 3LN5 ; 3LV3 ; 3MV7 ; 3MV8 ; 3MV9 ; 3SJV ; 3SKM ; 3SKO ; 3SPV ; 3UPR ; 3VCL ; 3VFS ; 3VFT ; 3VFU ; 3VFV ; 3VFW ; 3VH8 ; 3VRI ; 3VRJ ; 3W39 ; 3WUW ; 3X11 ; 3X12 ; 3X13 ; 3X14 ; 4G8G ; 4G8I ; 4G9D ; 4G9F ; 4JQV ; 4JQX ; 4LCY ; 4LNR ; 4MJI ; 4O2C ; 4O2E ; 4O2F ; 4PR5 ; 4PRN ; 4QRP ; 4QRQ ; 4QRR ; 4QRS ; 4QRT ; 4QRU ; 4U1H ; 4U1I ; 4U1J ; 4U1K ; 4U1L ; 4U1M ; 4U1N ; 4U1S ; 4XXC ; 5B38 ; 5B39 ; 5DEF ; 5DEG ; 5EO0 ; 5EO1 ; 5IB1 ; 5IB2 ; 5IB3 ; 5IB4 ; 5IB5 ; 5IEH ; 5IEK ; 5IM7 ; 5INC ; 5IND ; 5T6W ; 5T6X ; 5T6Y ; 5T6Z ; 5T70 ; 5TXS ; 5U98 ; 5V5L ; 5V5M ; 5VUD ; 5VUE ; 5VUF ; 5VWD ; 5VWF ; 5VWH ; 5VWJ ; 5VZ5 ; 5WMN ; 5WMO ; 5WMP ; 5WMQ ; 5WMR ; 5XOS ; 5XOT ; 6AT5 ; 6AVF ; 6AVG ; 6BJ2 ; 6BJ3 ; 6BJ8 ; 6BXP ; 6BXQ ; 6D29 ; 6D2B ; 6D2R ; 6D2T ; 6MT3 ; 6MT4 ; 6MT5 ; 6MT6 ; 6MTL ; 6MTM ; 6P23 ; 6P27 ; 6P2C ; 6P2F ; 6P2S ; 6PYJ ; 6PYL ; 6PYV ; 6PYW ; 6PZ5 ; 6UJ7 ; 6UJ8 ; 6UJ9 ; 6VMX ; 7LFZ ; 7LG0 ; 7LGD ; 7LGT ; 7RZD ; 7RZJ ; 7S79 ; 7S7D ; 7S7E ; 7S7F ; 7S8A ; 7S8E ; 7S8F
Pfam ID
PF07654 ; PF00129 ; PF06623
Sequence
MLVMAPRTVLLLLSAALALTETWAGSHSMRYFYTSVSRPGRGEPRFISVGYVDDTQFVRF
DSDAASPREEPRAPWIEQEGPEYWDRNTQIYKAQAQTDRESLRNLRGYYNQSEAGSHTLQ
SMYGCDVGPDGRLLRGHDQYAYDGKDYIALNEDLRSWTAADTAAQITQRKWEAAREAEQR
RAYLEGECVEWLRRYLENGKDKLERADPPKTHVTHHPISDHEATLRCWALGFYPAEITLT
WQRDGEDQTQDTELVETRPAGDRTFQKWAAVVVPSGEEQRYTCHVQHEGLPKPLTLRWEP
SSQSTVPIVGIVAGLAVLAVVVIGAVVAAVMCRRKSSGGKGGSYSQAACSDSAQGSDVSL
TA
Function
Antigen-presenting major histocompatibility complex class I (MHCI) molecule. In complex with B2M/beta 2 microglobulin displays primarily viral and tumor-derived peptides on antigen-presenting cells for recognition by alpha-beta T cell receptor (TCR) on HLA-B-restricted CD8-positive T cells, guiding antigen-specific T cell immune response to eliminate infected or transformed cells. May also present self-peptides derived from the signal sequence of secreted or membrane proteins, although T cells specific for these peptides are usually inactivated to prevent autoreactivity. Both the peptide and the MHC molecule are recognized by TCR, the peptide is responsible for the fine specificity of antigen recognition and MHC residues account for the MHC restriction of T cells. Typically presents intracellular peptide antigens of 8 to 13 amino acids that arise from cytosolic proteolysis via constitutive proteasome and IFNG-induced immunoproteasome. Can bind different peptides containing allele-specific binding motifs, which are mainly defined by anchor residues at position 2 and 9 ; Allele B*07:02: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and mainly a Leu anchor residue at the C-terminus. Presents a long peptide (APRGPHGGAASGL) derived from the cancer-testis antigen CTAG1A/NY-ESO-1, eliciting a polyclonal CD8-positive T cell response against tumor cells. Presents viral epitopes derived from HIV-1 gag-pol (TPQDLNTML) and Nef (RPQVPLRPM). Presents an immunodominant epitope derived from SARS-CoV-2 N/nucleoprotein (SPRWYFYYL). Displays self-peptides including a peptide derived from the signal sequence of HLA-DPB1 (APRTVALTA) ; Allele B*08:01: Presents to CD8-positive T cells viral epitopes derived from EBV/HHV-4 EBNA3 (QAKWRLQTL), eliciting cytotoxic T cell response; Allele B*13:02: Presents multiple HIV-1 epitopes derived from gag (RQANFLGKI, GQMREPRGSDI), nef (RQDILDLWI), gag-pol (RQYDQILIE, GQGQWTYQI) and rev (LQLPPLERL), all having in common a Gln residue at position 2 and mainly hydrophobic amino acids Leu, Ile or Val at the C-terminus. Associated with succesful control of HIV-1 infection; Allele B*18:01: Preferentially presents octomeric and nonameric peptides sharing a common motif, namely a Glu at position 2 and Phe or Tyr anchor residues at the C-terminus. Presents an EBV/HHV-4 epitope derived from BZLF1 (SELEIKRY). May present to CD8-positive T cells an antigenic peptide derived from MAGEA3 (MEVDPIGHLY), triggering an anti-tumor immune response. May display a broad repertoire of self-peptides with a preference for peptides derived from RNA-binding proteins ; Allele B*27:05: Presents to CD8-positive T cells immunodominant viral epitopes derived from HCV POLG (ARMILMTHF), HIV-1 gag (KRWIILGLNK), IAV NP (SRYWAIRTR), SARS-CoV-2 N/nucleoprotein (QRNAPRITF), EBV/HHV-4 EBNA4 (HRCQAIRKK) and EBV/HHV-4 EBNA6 (RRIYDLIEL), conferring longterm protection against viral infection. Can present self-peptides derived from cytosolic and nuclear proteins. All peptides carry an Arg at position 2. The peptide-bound form interacts with NK cell inhibitory receptor KIR3DL1 and inhibits NK cell activation in a peptide-specific way, being particularly sensitive to the nature of the amino acid side chain at position 8 of the antigenic peptide. KIR3DL1 fails to recognize HLA-B*27:05 in complex with B2M and EBV/HHV-4 EBNA6 (RRIYDLIEL) peptide, which can lead to increased activation of NK cells during infection. May present an altered repertoire of peptides in the absence of TAP1-TAP2 and TAPBPL ; Allele B*40:01: Presents immunodominant viral epitopes derived from EBV/HHV-4 LMP2 (IEDPPFNSL) and SARS-CoV-2 N/nucleoprotein (MEVTPSGTWL), triggering memory CD8-positive T cell response. Displays self-peptides sharing a signature motif, namely a Glu at position 2 and a Leu anchor residue at the C-terminus ; Allele B*41:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus; Allele B*44:02: Presents immunodominant viral epitopes derived from EBV/HHV-4 EBNA4 (VEITPYKPTW) and EBNA6 (AEGGVGWRHW, EENLLDFVRF), triggering memory CD8-positive T cell response. Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Phe, Tyr or Trp anchor residues at the C-terminus ; Allele B*45:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus; Allele B*46:01: Preferentially presents nonameric peptides sharing a signature motif, namely Ala and Leu at position 2 and Tyr, Phe, Leu, or Met anchor residues at the C-terminus. The peptide-bound form interacts with KIR2DL3 and inhibits NK cell cytotoxic response in a peptide-specific way; Allele B*47:01: Displays self-peptides sharing a signature motif, namely an Asp at position 2 and Leu or Met anchor residues at the C-terminus; Allele B*49:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ile or Val anchor residues at the C-terminus; Allele B*50:01: Displays self-peptides sharing a signature motif, namely a Glu at position 2 and Ala or Pro anchor residues at the C-terminus; Allele B*51:01: Presents an octomeric HIV-1 epitope derived from gag-pol (TAFTIPSI) to the public TRAV17/TRBV7-3 TCR clonotype, strongly suppressing HIV-1 replication; Allele B*54:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus; Allele B*55:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus; Allele B*56:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Ala anchor residue at the C-terminus; Allele B*57:01: The peptide-bound form recognizes KIR3DL1 and inhibits NK cell cytotoxic response. Presents HIV gag peptides (immunodominant KAFSPEVIPMF and subdominant KALGPAATL epitopes) predominantly to CD8-positive T cell clones expressing a TRAV41-containing TCR, triggering HLA-B-restricted T cell responses; Allele B*67:01: Displays peptides sharing a common signature motif, namely a Pro residue at position 2 and Leu anchor residue at the C-terminus.
KEGG Pathway
Endocytosis (hsa04144 )
Phagosome (hsa04145 )
Cellular senescence (hsa04218 )
Cell adhesion molecules (hsa04514 )
Antigen processing and presentation (hsa04612 )
.tural killer cell mediated cytotoxicity (hsa04650 )
Type I diabetes mellitus (hsa04940 )
Human cytomegalovirus infection (hsa05163 )
Human papillomavirus infection (hsa05165 )
Human T-cell leukemia virus 1 infection (hsa05166 )
Kaposi sarcoma-associated herpesvirus infection (hsa05167 )
Herpes simplex virus 1 infection (hsa05168 )
Epstein-Barr virus infection (hsa05169 )
Human immunodeficiency virus 1 infection (hsa05170 )
Viral carcinogenesis (hsa05203 )
Autoimmune thyroid disease (hsa05320 )
Allograft rejection (hsa05330 )
Graft-versus-host disease (hsa05332 )
Viral myocarditis (hsa05416 )
Reactome Pathway
Endosomal/Vacuolar pathway (R-HSA-1236977 )
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (R-HSA-198933 )
DAP12 interactions (R-HSA-2172127 )
Neutrophil degranulation (R-HSA-6798695 )
Interferon gamma signaling (R-HSA-877300 )
Interferon alpha/beta signaling (R-HSA-909733 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Antigen Presentation (R-HSA-983170 )
ER-Phagosome pathway (R-HSA-1236974 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 13 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the Type IV hypersensitivity reaction ADR of Ciclosporin. [24]
Carbamazepine DMZOLBI Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Carbamazepine. [25]
Phenobarbital DMXZOCG Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the Toxic epidermal necrolysis ADR of Phenobarbital. [26]
Ethanol DMDRQZU Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the Stevens-Johnson syndrome ADR of Ethanol. [27]
Aspirin DM672AH Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the Liver injury ADR of Aspirin. [28]
Phenytoin DMNOKBV Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Phenytoin. [29]
Penicillamine DM40EF6 Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Penicillamine. [30]
Allopurinol DMLPAOB Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the response to substance of Allopurinol. [31]
Abacavir DMMN36E Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the response to substance of Abacavir. [32]
Flucloxacillin DMNUWST Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Flucloxacillin. [33]
Lamotrigine DM8SXYG Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Lamotrigine. [29]
Oxcarbazepine DM5PU6O Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) affects the response to substance of Oxcarbazepine. [29]
Ticlopidine DMO946V Approved HLA class I histocompatibility antigen, B alpha chain (HLA-B) increases the Liver injury ADR of Ticlopidine. [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [14]
------------------------------------------------------------------------------------
37 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [9]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [10]
Selenium DM25CGV Approved Selenium increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [11]
Etoposide DMNH3PG Approved Etoposide affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [13]
Piroxicam DMTK234 Approved Piroxicam affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Ifosfamide DMCT3I8 Approved Ifosfamide affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Sulindac DM2QHZU Approved Sulindac affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Omeprazole DM471KJ Approved Omeprazole affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Erythromycin DM4K7GQ Approved Erythromycin affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Furosemide DMMQ8ZG Approved Furosemide affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Amoxicillin DMUYNEI Approved Amoxicillin affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Doxycycline DM7ICNU Approved Doxycycline affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Vancomycin DM3JFIH Approved Vancomycin affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Metolazone DMB39LO Approved Metolazone affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Brinzolamide DMBAPFG Approved Brinzolamide affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
Cefadroxil DMMC345 Approved Cefadroxil affects the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [11]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [15]
Eugenol DM7US1H Patented Eugenol increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [18]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [19]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [20]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [21]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [22]
DM9CEI5 decreases the expression of HLA class I histocompatibility antigen, B alpha chain (HLA-B). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
3 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother. 2010 May;33(4):391-401. doi: 10.1097/CJI.0b013e3181d32f22.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Systems pharmacological analysis of drugs inducing stevens-johnson syndrome and toxic epidermal necrolysis. Chem Res Toxicol. 2015 May 18;28(5):927-34. doi: 10.1021/tx5005248. Epub 2015 Apr 3.
13 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
17 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
20 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
21 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
22 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
23 Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B and -C loci. Mol Immunol. 1994 Jun;31(8):607-14. doi: 10.1016/0161-5890(94)90168-6.
24 Hla-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the Han Chinese population. Basic Clin Pharmacol Toxicol. 2011 Jul;109(1):42-6. doi: 10.1111/j.1742-7843.2011.00681.x. Epub 2011 Mar 16.
25 Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008 Oct;9(10):1543-6. doi: 10.2217/14622416.9.10.1543.
26 HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia. 2013 Jul;54(7):1307-14. doi: 10.1111/epi.12217. Epub 2013 May 20.
27 A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008 Feb;18(2):99-107. doi: 10.1097/FPC.0b013e3282f3ef9c.
28 HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One. 2013 Jul 9;8(7):e68111. doi: 10.1371/journal.pone.0068111. Print 2013.
29 Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics. 2010 Mar;11(3):349-56. doi: 10.2217/pgs.09.162.
30 Longterm followup of treatment with D-penicillamine for rheumatoid arthritis: effectivity and toxicity in relation to HLA antigens. J Rheumatol. 1987 Dec;14(6):1115-9.
31 HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4134-9. doi: 10.1073/pnas.0409500102. Epub 2005 Mar 2.
32 Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002 Mar 30;359(9312):1121-2. doi: 10.1016/S0140-6736(02)08158-8.
33 HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009 Jul;41(7):816-9. doi: 10.1038/ng.379. Epub 2009 May 31.
34 Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J. 2008 Feb;8(1):29-33. doi: 10.1038/sj.tpj.6500442. Epub 2007 Mar 6.