General Information of Drug Off-Target (DOT) (ID: OTODMJ1D)

DOT Name Epithelial membrane protein 3 (EMP3)
Synonyms EMP-3; Hematopoietic neural membrane protein 1; HNMP-1; Protein YMP
Gene Name EMP3
Related Disease
Esophageal squamous cell carcinoma ( )
Adult glioblastoma ( )
Advanced cancer ( )
Astrocytoma ( )
Breast cancer ( )
Carcinoma of esophagus ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Esophageal cancer ( )
Gastric cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Malignant glioma ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Neuroblastoma ( )
Non-small-cell lung cancer ( )
Pheochromocytoma ( )
Prostate cancer ( )
Prostate neoplasm ( )
Stomach cancer ( )
Transitional cell carcinoma ( )
Urothelial carcinoma ( )
Keratoconus ( )
Squamous cell carcinoma ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Glioblastoma multiforme ( )
Glioma ( )
UniProt ID
EMP3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00822
Sequence
MSLLLLVVSALHILILILLFVATLDKSWWTLPGKESLNLWYDCTWNNDTKTWACSNVSEN
GWLKAVQVLMVLSLILCCLSFILFMFQLYTMRRGGLFYATGLCQLCTSVAVFTGALIYAI
HAEEILEKHPRGGSFGYCFALAWVAFPLALVSGIIYIHLRKRE
Function Probably involved in cell proliferation and cell-cell interactions.
KEGG Pathway
TGF-beta sig.ling pathway (hsa04350 )

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Esophageal squamous cell carcinoma DIS5N2GV Definitive Biomarker [1]
Adult glioblastoma DISVP4LU Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Astrocytoma DISL3V18 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Altered Expression [3]
Carcinoma of esophagus DISS6G4D Strong Posttranslational Modification [5]
Endometrial cancer DISW0LMR Strong Biomarker [6]
Endometrial carcinoma DISXR5CY Strong Biomarker [6]
Esophageal cancer DISGB2VN Strong Posttranslational Modification [5]
Gastric cancer DISXGOUK Strong Biomarker [7]
Lung cancer DISCM4YA Strong Altered Expression [1]
Lung carcinoma DISTR26C Strong Altered Expression [1]
Malignant glioma DISFXKOV Strong Biomarker [8]
Neoplasm DISZKGEW Strong Biomarker [9]
Neoplasm of esophagus DISOLKAQ Strong Posttranslational Modification [5]
Neuroblastoma DISVZBI4 Strong Biomarker [1]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [1]
Pheochromocytoma DIS56IFV Strong Posttranslational Modification [10]
Prostate cancer DISF190Y Strong Biomarker [11]
Prostate neoplasm DISHDKGQ Strong Biomarker [11]
Stomach cancer DISKIJSX Strong Biomarker [7]
Transitional cell carcinoma DISWVVDR Strong Altered Expression [3]
Urothelial carcinoma DISRTNTN Strong Altered Expression [3]
Keratoconus DISOONXH moderate Altered Expression [12]
Squamous cell carcinoma DISQVIFL moderate Altered Expression [13]
Gallbladder cancer DISXJUAF Limited Altered Expression [14]
Gallbladder carcinoma DISD6ACL Limited Altered Expression [14]
Glioblastoma multiforme DISK8246 Limited Altered Expression [2]
Glioma DIS5RPEH Limited Posttranslational Modification [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Epithelial membrane protein 3 (EMP3). [16]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Epithelial membrane protein 3 (EMP3). [17]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Epithelial membrane protein 3 (EMP3). [18]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Epithelial membrane protein 3 (EMP3). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Epithelial membrane protein 3 (EMP3). [20]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Epithelial membrane protein 3 (EMP3). [21]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Epithelial membrane protein 3 (EMP3). [22]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Epithelial membrane protein 3 (EMP3). [23]
Quercetin DM3NC4M Approved Quercetin increases the expression of Epithelial membrane protein 3 (EMP3). [24]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Epithelial membrane protein 3 (EMP3). [25]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Epithelial membrane protein 3 (EMP3). [26]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Epithelial membrane protein 3 (EMP3). [27]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Epithelial membrane protein 3 (EMP3). [28]
Selenium DM25CGV Approved Selenium increases the expression of Epithelial membrane protein 3 (EMP3). [29]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Epithelial membrane protein 3 (EMP3). [30]
Etoposide DMNH3PG Approved Etoposide increases the expression of Epithelial membrane protein 3 (EMP3). [31]
Paclitaxel DMLB81S Approved Paclitaxel increases the expression of Epithelial membrane protein 3 (EMP3). [32]
Menthol DMG2KW7 Approved Menthol increases the expression of Epithelial membrane protein 3 (EMP3). [33]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Epithelial membrane protein 3 (EMP3). [31]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Epithelial membrane protein 3 (EMP3). [31]
Seocalcitol DMKL9QO Phase 3 Seocalcitol decreases the expression of Epithelial membrane protein 3 (EMP3). [34]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Epithelial membrane protein 3 (EMP3). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Epithelial membrane protein 3 (EMP3). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Epithelial membrane protein 3 (EMP3). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Epithelial membrane protein 3 (EMP3). [38]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Epithelial membrane protein 3 (EMP3). [39]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Epithelial membrane protein 3 (EMP3). [40]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Epithelial membrane protein 3 (EMP3). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Epithelial membrane protein 3 (EMP3). [35]
------------------------------------------------------------------------------------

References

1 Epithelial membrane protein 3 is frequently shown as promoter methylation and functions as a tumor suppressor gene in non-small cell lung cancer.Exp Mol Pathol. 2013 Dec;95(3):313-8. doi: 10.1016/j.yexmp.2013.07.001. Epub 2013 Aug 3.
2 High EMP3 expression might independently predict poor overall survival in glioblastoma and its expression is related to DNA methylation.Medicine (Baltimore). 2018 Jan;97(1):e9538. doi: 10.1097/MD.0000000000009538.
3 EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer.Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):199-211. doi: 10.1016/j.bbcan.2017.04.004. Epub 2017 Apr 10.
4 DNA hypermethylation and aberrant expression of the EMP3 gene at 19q13.3 in Human Gliomas.Brain Pathol. 2007 Oct;17(4):363-70. doi: 10.1111/j.1750-3639.2007.00083.x. Epub 2007 Jul 4.
5 EMP3 as a candidate tumor suppressor gene for solid tumors.Expert Opin Ther Targets. 2009 Jul;13(7):811-22. doi: 10.1517/14728220902988549.
6 Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer.J Cell Biochem. 2019 Oct;120(10):17593-17601. doi: 10.1002/jcb.29027. Epub 2019 May 29.
7 EMP3 is induced by TWIST1/2 and regulates epithelial-to-mesenchymal transition of gastric cancer cells.Tumour Biol. 2017 Jul;39(7):1010428317718404. doi: 10.1177/1010428317718404.
8 Whole-Genome Expression Microarray Combined with Machine Learning to Identify Prognostic Biomarkers for High-Grade Glioma.J Mol Neurosci. 2018 Apr;64(4):491-500. doi: 10.1007/s12031-018-1049-7. Epub 2018 Mar 3.
9 Characterization of the epithelial membrane protein 3 interaction network reveals a potential functional link to mitogenic signal transduction regulation.Int J Cancer. 2019 Jul 15;145(2):461-473. doi: 10.1002/ijc.32107. Epub 2019 Jan 20.
10 Evaluation of a functional epigenetic approach to identify promoter region methylation in phaeochromocytoma and neuroblastoma.Endocr Relat Cancer. 2008 Sep;15(3):777-86. doi: 10.1677/ERC-08-0072. Epub 2008 May 22.
11 Analysis of candidate genes for prostate cancer.Hum Hered. 2004;57(4):172-8. doi: 10.1159/000081443.
12 Altered expression of CLC, DSG3, EMP3, S100A2, and SLPI in corneal epithelium from keratoconus patients.Cornea. 2005 Aug;24(6):661-8. doi: 10.1097/01.ico.0000153556.59407.69.
13 EMP3 as a tumor suppressor gene for esophageal squamous cell carcinoma.Cancer Lett. 2009 Feb 8;274(1):25-32. doi: 10.1016/j.canlet.2008.08.021. Epub 2008 Sep 26.
14 RETRACTED: EMP3, which is regulated by miR-663a, suppresses gallbladder cancer progression via interference with the MAPK/ERK pathway.Cancer Lett. 2018 Aug 28;430:97-108. doi: 10.1016/j.canlet.2018.05.022. Epub 2018 May 17.
15 EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma.Cancer Res. 2005 Apr 1;65(7):2565-71. doi: 10.1158/0008-5472.CAN-04-4283.
16 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Retinoic acid-induced downmodulation of telomerase activity in human cancer cells. Exp Mol Pathol. 2005 Oct;79(2):108-17.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Apoptosis-related mRNA expression profiles of ovarian cancer cell lines following cisplatin treatment. J Gynecol Oncol. 2010 Dec 30;21(4):255-61. doi: 10.3802/jgo.2010.21.4.255. Epub 2010 Dec 31.
22 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
23 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
24 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
25 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
26 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
27 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
28 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
29 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
30 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
31 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
32 Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009 Aug 21;138(4):645-659. doi: 10.1016/j.cell.2009.06.034. Epub 2009 Aug 13.
33 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
34 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
39 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
40 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.