General Information of Drug Off-Target (DOT) (ID: OTQNSVCQ)

DOT Name Mothers against decapentaplegic homolog 5 (SMAD5)
Synonyms MAD homolog 5; Mothers against DPP homolog 5; JV5-1; SMAD family member 5; SMAD 5; Smad5; hSmad5
Gene Name SMAD5
Related Disease
Colitis ( )
Crohn disease ( )
Inflammatory bowel disease ( )
Neoplasm ( )
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
Adult lymphoma ( )
B-cell lymphoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of esophagus ( )
Diabetic kidney disease ( )
Esophageal cancer ( )
Granulosa cell tumor ( )
Juvenile polyposis syndrome ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Lung neoplasm ( )
Lymphoma ( )
Myelodysplastic syndrome ( )
Neoplasm of esophagus ( )
Non-small-cell lung cancer ( )
Osteoporosis ( )
Pediatric lymphoma ( )
Plasma cell myeloma ( )
Hepatocellular carcinoma ( )
Schizophrenia ( )
Chronic pancreatitis ( )
Cocaine addiction ( )
Myeloid neoplasm ( )
Non-insulin dependent diabetes ( )
Substance withdrawal syndrome ( )
UniProt ID
SMAD5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6FZS; 6TCE
Pfam ID
PF03165 ; PF03166
Sequence
MTSMASLFSFTSPAVKRLLGWKQGDEEEKWAEKAVDALVKKLKKKKGAMEELEKALSSPG
QPSKCVTIPRSLDGRLQVSHRKGLPHVIYCRVWRWPDLQSHHELKPLDICEFPFGSKQKE
VCINPYHYKRVESPVLPPVLVPRHNEFNPQHSLLVQFRNLSHNEPHMPQNATFPDSFHQP
NNTPFPLSPNSPYPPSPASSTYPNSPASSGPGSPFQLPADTPPPAYMPPDDQMGQDNSQP
MDTSNNMIPQIMPSISSRDVQPVAYEEPKHWCSIVYYELNNRVGEAFHASSTSVLVDGFT
DPSNNKSRFCLGLLSNVNRNSTIENTRRHIGKGVHLYYVGGEVYAECLSDSSIFVQSRNC
NFHHGFHPTTVCKIPSSCSLKIFNNQEFAQLLAQSVNHGFEAVYELTKMCTIRMSFVKGW
GAEYHRQDVTSTPCWIEIHLHGPLQWLDKVLTQMGSPLNPISSVS
Function
Transcriptional regulator that plays a role in various cellular processes including embryonic development, cell differentiation, angiogenesis and tissue homeostasis. Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form an heteromeric complex which translocates into the nucleus acting as transcription factor. In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network. Non-phosphorylated SMAD5 has a cytoplasmic role in energy metabolism regulation by promoting mitochondrial respiration and glycolysis in response to cytoplasmic pH changes. Mechanistically, interacts with hexokinase 1/HK1 and thereby accelerates glycolysis.
Tissue Specificity Ubiquitous.
KEGG Pathway
TGF-beta sig.ling pathway (hsa04350 )
Sig.ling pathways regulating pluripotency of stem cells (hsa04550 )
Reactome Pathway
Signaling by BMP (R-HSA-201451 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colitis DISAF7DD Definitive Biomarker [1]
Crohn disease DIS2C5Q8 Definitive Altered Expression [1]
Inflammatory bowel disease DISGN23E Definitive Altered Expression [1]
Neoplasm DISZKGEW Definitive Posttranslational Modification [2]
Acute monocytic leukemia DIS28NEL Strong Genetic Variation [3]
Acute myelogenous leukaemia DISCSPTN Strong Genetic Variation [3]
Adult lymphoma DISK8IZR Strong Biomarker [4]
B-cell lymphoma DISIH1YQ Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Carcinoma of esophagus DISS6G4D Strong Biomarker [6]
Diabetic kidney disease DISJMWEY Strong Biomarker [7]
Esophageal cancer DISGB2VN Strong Biomarker [6]
Granulosa cell tumor DISKWVAB Strong Altered Expression [8]
Juvenile polyposis syndrome DISBPSLH Strong Genetic Variation [9]
leukaemia DISS7D1V Strong Biomarker [10]
Leukemia DISNAKFL Strong Biomarker [10]
Lung adenocarcinoma DISD51WR Strong Genetic Variation [11]
Lung neoplasm DISVARNB Strong Biomarker [12]
Lymphoma DISN6V4S Strong Biomarker [4]
Myelodysplastic syndrome DISYHNUI Strong Genetic Variation [10]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [6]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [13]
Osteoporosis DISF2JE0 Strong Biomarker [14]
Pediatric lymphoma DIS51BK2 Strong Biomarker [4]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [15]
Hepatocellular carcinoma DIS0J828 moderate Biomarker [16]
Schizophrenia DISSRV2N moderate Altered Expression [17]
Chronic pancreatitis DISBUOMJ Limited Biomarker [18]
Cocaine addiction DISHTRXG Limited Biomarker [19]
Myeloid neoplasm DIS2YOWO Limited Biomarker [20]
Non-insulin dependent diabetes DISK1O5Z Limited Therapeutic [21]
Substance withdrawal syndrome DISTT24U Limited Biomarker [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Mothers against decapentaplegic homolog 5 (SMAD5). [22]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the phosphorylation of Mothers against decapentaplegic homolog 5 (SMAD5). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Mothers against decapentaplegic homolog 5 (SMAD5). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Mothers against decapentaplegic homolog 5 (SMAD5). [36]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Mothers against decapentaplegic homolog 5 (SMAD5). [36]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [23]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [26]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [27]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [28]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [29]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [30]
Bexarotene DMOBIKY Approved Bexarotene increases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [31]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [33]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [37]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [38]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Mothers against decapentaplegic homolog 5 (SMAD5). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Loss of Smad5 leads to the disassembly of the apical junctional complex and increased susceptibility to experimental colitis.Am J Physiol Gastrointest Liver Physiol. 2011 Apr;300(4):G586-97. doi: 10.1152/ajpgi.00041.2010. Epub 2011 Jan 6.
2 Integrin v3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-B ligand signaling axis.Mol Cancer. 2012 Sep 11;11:66. doi: 10.1186/1476-4598-11-66.
3 Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4.Blood Cells Mol Dis. 2002 Mar-Apr;28(2):221-33. doi: 10.1006/bcmd.2002.0487.
4 Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis.Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3111-6. doi: 10.1073/pnas.0910667107. Epub 2010 Feb 1.
5 Molecular targeting of the Aurora-A/SMAD5 oncogenic axis restores chemosensitivity in human breast cancer cells.Oncotarget. 2017 Sep 1;8(53):91803-91816. doi: 10.18632/oncotarget.20610. eCollection 2017 Oct 31.
6 MicroRNA-145 promotes esophageal cancer cells proliferation and metastasis by targeting SMAD5.Scand J Gastroenterol. 2018 Jun-Jul;53(7):769-776. doi: 10.1080/00365521.2018.1476913. Epub 2018 May 31.
7 Investigation of DNA polymorphisms in SMAD genes for genetic predisposition to diabetic nephropathy in patients with type 1 diabetes mellitus.Diabetologia. 2009 May;52(5):844-9. doi: 10.1007/s00125-009-1281-3. Epub 2009 Feb 27.
8 TGF signaling promotes juvenile granulosa cell tumorigenesis by suppressing apoptosis.Mol Endocrinol. 2014 Nov;28(11):1887-98. doi: 10.1210/me.2014-1217. Epub 2014 Sep 22.
9 Screening SMAD1, SMAD2, SMAD3, and SMAD5 for germline mutations in juvenile polyposis syndrome.Gut. 1999 Sep;45(3):406-8. doi: 10.1136/gut.45.3.406.
10 Differential expression of a novel C-terminally truncated splice form of SMAD5 in hematopoietic stem cells and leukemia.Blood. 2000 Jun 15;95(12):3945-50.
11 A functional variant in miR-155 regulation region contributes to lung cancer risk and survival.Oncotarget. 2015 Dec 15;6(40):42781-92. doi: 10.18632/oncotarget.5840.
12 Bone morphogenetic protein 2 stimulation of tumor growth involves the activation of Smad-1/5.Oncogene. 2006 Feb 2;25(5):685-92. doi: 10.1038/sj.onc.1209110.
13 Migration and epithelial-to-mesenchymal transition of lung cancer can be targeted via translation initiation factors eIF4E and eIF4GI.Lab Invest. 2016 Sep;96(9):1004-15. doi: 10.1038/labinvest.2016.77. Epub 2016 Aug 8.
14 Protective and therapeutic effects of Pilose antler against kidney deficiency-induced osteoporosis.Cell Mol Biol (Noisy-le-grand). 2019 Jun 30;65(5):24-31.
15 Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.Cell Signal. 2016 Jun;28(6):620-30. doi: 10.1016/j.cellsig.2016.03.003. Epub 2016 Mar 11.
16 MALAT1 functions as a competing endogenous RNA to regulate SMAD5 expression by acting as a sponge for miR-142-3p in hepatocellular carcinoma.Cell Biosci. 2019 May 10;9:39. doi: 10.1186/s13578-019-0299-6. eCollection 2019.
17 Molecular signatures associated with cognitive deficits in schizophrenia: a study of biopsied olfactory neural epithelium.Transl Psychiatry. 2016 Oct 11;6(10):e915. doi: 10.1038/tp.2016.154.
18 STX12 lncRNA/miR-148a/SMAD5 participate in the regulation of pancreatic stellate cell activation through a mechanism involving competing endogenous RNA.Pancreatology. 2017 Mar-Apr;17(2):237-246. doi: 10.1016/j.pan.2017.01.010. Epub 2017 Feb 1.
19 E3 Ubiquitin-Protein Ligase SMURF1 in the Nucleus Accumbens Mediates Cocaine Seeking.Biol Psychiatry. 2018 Dec 15;84(12):881-892. doi: 10.1016/j.biopsych.2018.07.013. Epub 2018 Jul 21.
20 Localization of SMAD5 and its evaluation as a candidate myeloid tumor suppressor.Cancer Res. 1997 Sep 1;57(17):3779-83.
21 Smad5 regulates Akt2 expression and insulin-induced glucose uptake in L6 myotubes.Mol Cell Endocrinol. 2010 May 5;319(1-2):30-8. doi: 10.1016/j.mce.2010.01.003. Epub 2010 Jan 14.
22 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
23 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
24 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci. 2014 Jun;139(2):328-37. doi: 10.1093/toxsci/kfu053. Epub 2014 Mar 27.
28 Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro. Eur J Nutr. 2005 Mar;44(3):143-56. doi: 10.1007/s00394-004-0503-1. Epub 2004 Apr 30.
29 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
30 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
31 Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006 Dec 15;66(24):12009-18.
32 The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells. J Periodontal Res. 2011 Dec;46(6):712-21. doi: 10.1111/j.1600-0765.2011.01394.x. Epub 2011 Jul 11.
33 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
34 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
35 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
36 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
37 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
38 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
39 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.