General Information of Drug Off-Target (DOT) (ID: OT4JHN4Y)

DOT Name Proline-rich AKT1 substrate 1 (AKT1S1)
Synonyms 40 kDa proline-rich AKT substrate
Gene Name AKT1S1
Related Disease
Cerebral infarction ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Glioma ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Breast cancer ( )
Breast carcinoma ( )
Clear cell renal carcinoma ( )
Esophageal squamous cell carcinoma ( )
Ewing sarcoma ( )
Hamartoma ( )
Hepatocellular carcinoma ( )
Hyperinsulinemia ( )
Kidney cancer ( )
Kidney neoplasm ( )
Lung cancer ( )
Lung carcinoma ( )
Myocardial infarction ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Prion disease ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Adult glioblastoma ( )
Cutaneous melanoma ( )
Glioblastoma multiforme ( )
Lung adenocarcinoma ( )
Melanoma ( )
Retinopathy ( )
UniProt ID
AKTS1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5WBL; 5WBU; 5WBY; 6SB0
Pfam ID
PF15798
Sequence
MASGRPEELWEAVVGAAERFRARTGTELVLLTAAPPPPPRPGPCAYAAHGRGALAEAARR
CLHDIALAHRAATAARPPAPPPAPQPPSPTPSPPRPTLAREDNEEDEDEPTETETSGEQL
GISDNGGLFVMDEDATLQDLPPFCESDPESTDDGSLSEETPAGPPTCSVPPASALPTQQY
AKSLPVSVPVWGFKEKRTEARSSDEENGPPSSPDLDRIAASMRALVLREAEDTQVFGDLP
RPRLNTSDFQKLKRKY
Function
Negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth. In absence of insulin and nutrients, AKT1S1 associates with the mTORC1 complex and directly inhibits mTORC1 activity by blocking the MTOR substrate-recruitment site. In response to insulin and nutrients, AKT1S1 dissociates from mTORC1. Its activity is dependent on its phosphorylation state and binding to 14-3-3. May also play a role in nerve growth factor-mediated neuroprotection.
Tissue Specificity Widely expressed with highest levels of expression in liver and heart. Expressed at higher levels in cancer cell lines (e.g. A-549 and HeLa) than in normal cell lines (e.g. HEK293).
KEGG Pathway
Autophagy - animal (hsa04140 )
mTOR sig.ling pathway (hsa04150 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Thermogenesis (hsa04714 )
Shigellosis (hsa05131 )
Reactome Pathway
mTORC1-mediated signalling (R-HSA-166208 )
AKT phosphorylates targets in the cytosol (R-HSA-198323 )
HSF1-dependent transactivation (R-HSA-3371571 )
Constitutive Signaling by AKT1 E17K in Cancer (R-HSA-5674400 )
MTOR signalling (R-HSA-165159 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cerebral infarction DISR1WNP Definitive Biomarker [1]
Gallbladder cancer DISXJUAF Definitive Biomarker [2]
Gallbladder carcinoma DISD6ACL Definitive Biomarker [2]
Glioma DIS5RPEH Definitive Posttranslational Modification [3]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Arteriosclerosis DISK5QGC Strong Biomarker [5]
Atherosclerosis DISMN9J3 Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Posttranslational Modification [6]
Breast carcinoma DIS2UE88 Strong Posttranslational Modification [6]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [7]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [8]
Ewing sarcoma DISQYLV3 Strong Biomarker [9]
Hamartoma DIS0I87H Strong Biomarker [10]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [11]
Hyperinsulinemia DISIDWT6 Strong Altered Expression [12]
Kidney cancer DISBIPKM Strong Altered Expression [13]
Kidney neoplasm DISBNZTN Strong Altered Expression [13]
Lung cancer DISCM4YA Strong Biomarker [14]
Lung carcinoma DISTR26C Strong Biomarker [14]
Myocardial infarction DIS655KI Strong Biomarker [15]
Neoplasm DISZKGEW Strong Biomarker [16]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [17]
Prion disease DISOUMB0 Strong Biomarker [18]
Prostate cancer DISF190Y Strong Biomarker [19]
Prostate carcinoma DISMJPLE Strong Biomarker [19]
Renal carcinoma DISER9XT Strong Altered Expression [13]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [7]
Adult glioblastoma DISVP4LU Limited Posttranslational Modification [20]
Cutaneous melanoma DIS3MMH9 Limited Altered Expression [4]
Glioblastoma multiforme DISK8246 Limited Posttranslational Modification [20]
Lung adenocarcinoma DISD51WR Limited Altered Expression [4]
Melanoma DIS1RRCY Limited Biomarker [21]
Retinopathy DISB4B0F Limited Posttranslational Modification [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Proline-rich AKT1 substrate 1 (AKT1S1). [23]
Estradiol DMUNTE3 Approved Estradiol increases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [26]
AZD5363 DM9SKW8 Approved AZD5363 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [29]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [32]
Rigosertib DMOSTXF Phase 3 Rigosertib decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [33]
AZD4547 DM3827C Phase 2/3 AZD4547 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [29]
GDC0941 DM1YAK6 Phase 2 GDC0941 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [34]
MK-2206 DMT1OZ6 Phase 2 MK-2206 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [35]
PF-04691502 DMS610L Phase 2 PF-04691502 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [36]
GSK2141795 DMSHE70 Phase 2 GSK2141795 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [37]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Proline-rich AKT1 substrate 1 (AKT1S1). [38]
Mivebresib DMCPF90 Phase 1 Mivebresib decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [40]
AZD8186 DMWYF1H Phase 1 AZD8186 affects the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [29]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [42]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [42]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [45]
Icariside II DM3DB8X Investigative Icariside II decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [46]
STO609 DMZSOG2 Investigative STO609 decreases the phosphorylation of Proline-rich AKT1 substrate 1 (AKT1S1). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [27]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [28]
Cabazitaxel DMPAZHC Approved Cabazitaxel decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [30]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [31]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [41]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 increases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Proline-rich AKT1 substrate 1 (AKT1S1). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury.J Cereb Blood Flow Metab. 2008 Jan;28(1):44-52. doi: 10.1038/sj.jcbfm.9600501. Epub 2007 Apr 25.
2 PIM1 kinase promotes gallbladder cancer cell proliferation via inhibition of proline-rich Akt substrate of 40kDa (PRAS40).J Cell Commun Signal. 2019 Jun;13(2):163-177. doi: 10.1007/s12079-018-00503-5. Epub 2019 Jan 21.
3 Activation of PI3K/mTOR pathway occurs in most adult low-grade gliomas and predicts patient survival.J Neurooncol. 2010 Mar;97(1):33-40. doi: 10.1007/s11060-009-0004-4. Epub 2009 Aug 25.
4 PRAS40 promotes NF-B transcriptional activity through association with p65.Oncogenesis. 2017 Sep 25;6(9):e381. doi: 10.1038/oncsis.2017.80.
5 PRAS40 suppresses atherogenesis through inhibition of mTORC1-dependent pro-inflammatory signaling in endothelial cells.Sci Rep. 2019 Nov 14;9(1):16787. doi: 10.1038/s41598-019-53098-1.
6 Targeting the PI3K/Akt/mTOR pathway with the pan-Akt inhibitor GDC-0068 in PIK3CA-mutant breast cancer brain metastases.Neuro Oncol. 2019 Nov 4;21(11):1401-1411. doi: 10.1093/neuonc/noz105.
7 Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1.Sci Rep. 2016 Feb 15;6:21524. doi: 10.1038/srep21524.
8 Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma.Biomed Pharmacother. 2018 Oct;106:1348-1356. doi: 10.1016/j.biopha.2018.07.075. Epub 2018 Jul 23.
9 PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma.Cancer Res. 2012 Mar 1;72(5):1260-9. doi: 10.1158/0008-5472.CAN-11-2254. Epub 2012 Jan 12.
10 Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.Nat Cell Biol. 2007 Mar;9(3):316-23. doi: 10.1038/ncb1547. Epub 2007 Feb 4.
11 Knockdown of Myosin VI Inhibits Proliferation of Hepatocellular Carcinoma Cells In Vitro.Chem Biol Drug Des. 2015 Oct;86(4):723-30. doi: 10.1111/cbdd.12544. Epub 2015 Mar 17.
12 Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle.Arch Physiol Biochem. 2014 May;120(2):64-72. doi: 10.3109/13813455.2014.894076. Epub 2014 Feb 27.
13 Calcineurin inhibitor-induced and Ras-mediated overexpression of VEGF in renal cancer cells involves mTOR through the regulation of PRAS40.PLoS One. 2011;6(8):e23919. doi: 10.1371/journal.pone.0023919. Epub 2011 Aug 23.
14 Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis.Acta Pharmacol Sin. 2005 Oct;26(10):1253-8. doi: 10.1111/j.1745-7254.2005.00184.x.
15 Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage.Circulation. 2013 Nov 5;128(19):2132-44. doi: 10.1161/CIRCULATIONAHA.113.003638. Epub 2013 Sep 5.
16 PRAS40 signaling in tumor.Oncotarget. 2017 Apr 20;8(40):69076-69085. doi: 10.18632/oncotarget.17299. eCollection 2017 Sep 15.
17 miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and p53 Expression in Hypoxic NSCLC Cells.Oncol Res. 2016;24(1):9-15. doi: 10.3727/096504016X14570992647168.
18 PRAS40 alleviates neurotoxic prion peptide-induced apoptosis via mTOR-AKT signaling.CNS Neurosci Ther. 2017 May;23(5):416-427. doi: 10.1111/cns.12685. Epub 2017 Mar 14.
19 Bloom Syndrome Protein Activates AKT and PRAS40 in Prostate Cancer Cells.Oxid Med Cell Longev. 2019 May 9;2019:3685817. doi: 10.1155/2019/3685817. eCollection 2019.
20 Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma.Acta Neuropathol Commun. 2018 Aug 21;6(1):81. doi: 10.1186/s40478-018-0583-4.
21 Targeting protein kinase-b3 (akt3) signaling in melanoma.Expert Opin Ther Targets. 2017 Mar;21(3):273-290. doi: 10.1080/14728222.2017.1279147. Epub 2017 Jan 16.
22 PF4 antagonizes retinal neovascularization via inhibiting PRAS40 phosphorylation in a mouse model of oxygen-induced retinopathy.Biochim Biophys Acta Mol Basis Dis. 2020 Mar 1;1866(3):165604. doi: 10.1016/j.bbadis.2019.165604. Epub 2019 Nov 15.
23 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
24 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci. 2016 Jun;151(2):434-46. doi: 10.1093/toxsci/kfw057. Epub 2016 Mar 29.
27 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
28 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
29 Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene. 2016 Aug 25;35(34):4518-28. doi: 10.1038/onc.2015.511. Epub 2016 Feb 8.
30 The triphenyltin carboxylate derivative triphenylstannyl 2-(benzylcarbamoyl)benzoate impedes prostate cancer progression via modulation of Akt/FOXO3a signaling. Toxicol Appl Pharmacol. 2020 Aug 15;401:115091. doi: 10.1016/j.taap.2020.115091. Epub 2020 Jun 7.
31 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
32 Phosphoproteomics reveals resveratrol-dependent inhibition of Akt/mTORC1/S6K1 signaling. J Proteome Res. 2014 Dec 5;13(12):5734-42. doi: 10.1021/pr500714a. Epub 2014 Oct 29.
33 In vitro antitumor mechanism of (E)-N-(2-methoxy-5-(((2,4,6-trimethoxystyryl)sulfonyl)methyl)pyridin-3-yl)methanesulfonamide. Mol Pharmacol. 2015 Jan;87(1):18-30. doi: 10.1124/mol.114.093245. Epub 2014 Oct 14.
34 Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors. Cancer Res. 2010 Feb 1;70(3):1164-72. doi: 10.1158/0008-5472.CAN-09-2525. Epub 2010 Jan 26.
35 Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 2017 Aug 25;292(34):14188-14204. doi: 10.1074/jbc.M117.778464. Epub 2017 Jun 20.
36 Synergistic inhibition of ovarian cancer cell growth by combining selective PI3K/mTOR and RAS/ERK pathway inhibitors. Eur J Cancer. 2013 Dec;49(18):3936-44. doi: 10.1016/j.ejca.2013.08.007. Epub 2013 Sep 3.
37 Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One. 2014 Jun 30;9(6):e100880. doi: 10.1371/journal.pone.0100880. eCollection 2014.
38 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
39 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
40 Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 2019 Jan 15;9(2):4. doi: 10.1038/s41408-018-0165-5.
41 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
42 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
43 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
44 Isobaric tags for relative and absolute quantitation-based proteomics analysis of the effect of ginger oil on bisphenol A-induced breast cancer cell proliferation. Oncol Lett. 2021 Feb;21(2):101. doi: 10.3892/ol.2020.12362. Epub 2020 Dec 8.
45 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
46 Blockade of epidermal growth factor receptor/mammalian target of rapamycin pathway by Icariside II results in reduced cell proliferation of osteosarcoma cells. Food Chem Toxicol. 2014 Nov;73:7-16. doi: 10.1016/j.fct.2014.08.002. Epub 2014 Aug 10.