General Information of Drug Off-Target (DOT) (ID: OT5WA666)

DOT Name Tyrosine-protein phosphatase non-receptor type 12 (PTPN12)
Synonyms EC 3.1.3.48; PTP-PEST; Protein-tyrosine phosphatase G1; PTPG1
Gene Name PTPN12
Related Disease
Hereditary leiomyomatosis and renal cell cancer ( )
Acute myocardial infarction ( )
Adult glioblastoma ( )
Autoimmune disease ( )
Carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Disorder of orbital region ( )
Esophageal squamous cell carcinoma ( )
Glioblastoma multiforme ( )
Graves disease ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Pyogenic arthritis-pyoderma gangrenosum-acne syndrome ( )
Retinoblastoma ( )
Triple negative breast cancer ( )
Urinary bladder neoplasm ( )
Invasive breast carcinoma ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
UniProt ID
PTN12_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5HDE; 5J8R; 5O2P
EC Number
3.1.3.48
Pfam ID
PF00102
Sequence
MEQVEILRKFIQRVQAMKSPDHNGEDNFARDFMRLRRLSTKYRTEKIYPTATGEKEENVK
KNRYKDILPFDHSRVKLTLKTPSQDSDYINANFIKGVYGPKAYVATQGPLANTVIDFWRM
IWEYNVVIIVMACREFEMGRKKCERYWPLYGEDPITFAPFKISCEDEQARTDYFIRTLLL
EFQNESRRLYQFHYVNWPDHDVPSSFDSILDMISLMRKYQEHEDVPICIHCSAGCGRTGA
ICAIDYTWNLLKAGKIPEEFNVFNLIQEMRTQRHSAVQTKEQYELVHRAIAQLFEKQLQL
YEIHGAQKIADGVNEINTENMVSSIEPEKQDSPPPKPPRTRSCLVEGDAKEEILQPPEPH
PVPPILTPSPPSAFPTVTTVWQDNDRYHPKPVLHMVSSEQHSADLNRNYSKSTELPGKNE
STIEQIDKKLERNLSFEIKKVPLQEGPKSFDGNTLLNRGHAIKIKSASPCIADKISKPQE
LSSDLNVGDTSQNSCVDCSVTQSNKVSVTPPEESQNSDTPPRPDRLPLDEKGHVTWSFHG
PENAIPIPDLSEGNSSDINYQTRKTVSLTPSPTTQVETPDLVDHDNTSPLFRTPLSFTNP
LHSDDSDSDERNSDGAVTQNKTNISTASATVSAATSTESISTRKVLPMSIARHNIAGTTH
SGAEKDVDVSEDSPPPLPERTPESFVLASEHNTPVRSEWSELQSQERSEQKKSEGLITSE
NEKCDHPAGGIHYEMCIECPPTFSDKREQISENPTEATDIGFGNRCGKPKGPRDPPSEWT
Function
Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades. Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2. Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248'.
Reactome Pathway
EGFR downregulation (R-HSA-182971 )
Signaling by PDGF (R-HSA-186797 )
Downregulation of ERBB2 signaling (R-HSA-8863795 )
Interleukin-37 signaling (R-HSA-9008059 )
Constitutive Signaling by Overexpressed ERBB2 (R-HSA-9634285 )
SHC1 events in ERBB2 signaling (R-HSA-1250196 )

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hereditary leiomyomatosis and renal cell cancer DISN22G2 Definitive Posttranslational Modification [1]
Acute myocardial infarction DISE3HTG Strong Biomarker [2]
Adult glioblastoma DISVP4LU Strong Biomarker [3]
Autoimmune disease DISORMTM Strong Biomarker [4]
Carcinoma DISH9F1N Strong Biomarker [5]
Colon cancer DISVC52G Strong Genetic Variation [6]
Colon carcinoma DISJYKUO Strong Genetic Variation [6]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [7]
Disorder of orbital region DISH0ECJ Strong Biomarker [8]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [9]
Glioblastoma multiforme DISK8246 Strong Biomarker [3]
Graves disease DISU4KOQ Strong Biomarker [8]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [10]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [11]
Neoplasm DISZKGEW Strong Biomarker [12]
Prostate cancer DISF190Y Strong Biomarker [12]
Prostate carcinoma DISMJPLE Strong Biomarker [12]
Prostate neoplasm DISHDKGQ Strong Biomarker [13]
Pyogenic arthritis-pyoderma gangrenosum-acne syndrome DIS7E15X Strong Biomarker [14]
Retinoblastoma DISVPNPB Strong Altered Expression [15]
Triple negative breast cancer DISAMG6N Strong Biomarker [16]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [17]
Invasive breast carcinoma DISANYTW Disputed Biomarker [18]
Advanced cancer DISAT1Z9 Limited Biomarker [4]
Breast cancer DIS7DPX1 Limited Genetic Variation [6]
Breast carcinoma DIS2UE88 Limited Genetic Variation [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Adenosine DMM2NSK Approved Tyrosine-protein phosphatase non-receptor type 12 (PTPN12) increases the Apoptosis ADR of Adenosine. [43]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [19]
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [33]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [38]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [21]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [22]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [24]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [25]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [26]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [27]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [29]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [30]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [31]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [32]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [34]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [35]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [36]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [37]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [39]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [40]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [41]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE increases the expression of Tyrosine-protein phosphatase non-receptor type 12 (PTPN12). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma.Cancer Res. 2018 Dec 1;78(23):6539-6548. doi: 10.1158/0008-5472.CAN-18-0901. Epub 2018 Oct 8.
2 Targeting protein tyrosine phosphatase PTP-PEST (PTPN12) for therapeutic intervention in acute myocardial infarction.Cardiovasc Res. 2020 Apr 1;116(5):1032-1046. doi: 10.1093/cvr/cvz165.
3 PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells.Cancer Res. 2018 Jul 15;78(14):3809-3822. doi: 10.1158/0008-5472.CAN-18-0085. Epub 2018 May 9.
4 Important roles of protein tyrosine phosphatase PTPN12 in tumor progression.Pharmacol Res. 2019 Jun;144:73-78. doi: 10.1016/j.phrs.2019.04.011. Epub 2019 Apr 5.
5 PTPN12 inhibits oral squamous epithelial carcinoma cell proliferation and invasion and can be used as a prognostic marker.Med Oncol. 2013;30(3):618. doi: 10.1007/s12032-013-0618-4. Epub 2013 Jun 4.
6 PTPN12 Affects Nasopharyngeal Carcinoma Cell Proliferation and Migration Through Regulating EGFR.Cancer Biother Radiopharm. 2018 Mar;33(2):60-64. doi: 10.1089/cbr.2017.2254.
7 A missense variant in PTPN12 associated with the risk of colorectal cancer by modifying Ras/MEK/ERK signaling.Cancer Epidemiol. 2019 Apr;59:109-114. doi: 10.1016/j.canep.2019.01.013. Epub 2019 Feb 4.
8 Preliminary evidence for interaction of PTPN12 polymorphism with TSHR genotype and association with Graves' ophthalmopathy.Clin Endocrinol (Oxf). 2007 Nov;67(5):663-7. doi: 10.1111/j.1365-2265.2007.02942.x. Epub 2007 Jul 3.
9 Tyrosine-protein phosphatase nonreceptor type 12 is a novel prognostic biomarker for esophageal squamous cell carcinoma.Ann Thorac Surg. 2012 May;93(5):1674-80. doi: 10.1016/j.athoracsur.2011.12.056. Epub 2012 Mar 17.
10 Hepatitis B virus mutations, expression quantitative trait loci for PTPN12, and their interactions in hepatocellular carcinoma.Cancer Med. 2016 Jul;5(7):1687-93. doi: 10.1002/cam4.712. Epub 2016 Apr 14.
11 Prognostic Value of Phosphotyrosine Phosphatases in Hepatocellular Carcinoma.Cell Physiol Biochem. 2018;46(6):2335-2346. doi: 10.1159/000489625. Epub 2018 May 4.
12 High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer.BMC Cancer. 2019 Oct 12;19(1):944. doi: 10.1186/s12885-019-6182-3.
13 Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells.Am J Physiol Cell Physiol. 2007 Jun;292(6):C2288-96. doi: 10.1152/ajpcell.00503.2006. Epub 2007 Feb 28.
14 Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder.Hum Mol Genet. 2002 Apr 15;11(8):961-9. doi: 10.1093/hmg/11.8.961.
15 MicroRNA-503 serves an oncogenic role in retinoblastoma progression by directly targeting PTPN12.Exp Ther Med. 2019 Sep;18(3):2285-2292. doi: 10.3892/etm.2019.7795. Epub 2019 Jul 19.
16 Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer.Nat Med. 2018 May;24(4):505-511. doi: 10.1038/nm.4507. Epub 2018 Mar 26.
17 Acquisition of the metastatic phenotype is accompanied by H2O2-dependent activation of the p130Cas signaling complex.Mol Cancer Res. 2013 Mar;11(3):303-12. doi: 10.1158/1541-7786.MCR-12-0478. Epub 2013 Jan 23.
18 Clinicopathological significance of PTPN12 expression in human breast cancer.Braz J Med Biol Res. 2012 Dec;45(12):1334-40. doi: 10.1590/s0100-879x2012007500163. Epub 2012 Oct 9.
19 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
21 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
22 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
26 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
27 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
28 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
29 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
30 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
31 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
32 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
33 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
34 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
35 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
36 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
37 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
38 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
39 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
40 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
41 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
42 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
43 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.