General Information of Drug Off-Target (DOT) (ID: OT6YCNLF)

DOT Name Coactosin-like protein (COTL1)
Gene Name COTL1
Related Disease
Isolated Pierre-Robin syndrome ( )
Alzheimer disease ( )
Alzheimer disease 3 ( )
Autoimmune disease ( )
Bone osteosarcoma ( )
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
Cleft soft palate ( )
Colitis ( )
Colon cancer ( )
Colon carcinoma ( )
Epilepsy ( )
Glioma ( )
Lung neoplasm ( )
Metastatic malignant neoplasm ( )
Neoplasm ( )
Obstructive lung disease ( )
Oral lichen planus ( )
Osteosarcoma ( )
Rheumatoid arthritis ( )
Systemic lupus erythematosus ( )
Triple negative breast cancer ( )
Small-cell lung cancer ( )
Dental caries ( )
Non-small-cell lung cancer ( )
UniProt ID
COTL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1T2L; 1T3X; 1T3Y; 1TMW; 1VFQ; 1WNJ
Pfam ID
PF00241
Sequence
MATKIDKEACRAAYNLVRDDGSAVIWVTFKYDGSTIVPGEQGAEYQHFIQQCTDDVRLFA
FVRFTTGDAMSKRSKFALITWIGENVSGLQRAKTGTDKTLVKEVVQNFAKEFVISDRKEL
EEDFIKSELKKAGGANYDAQTE
Function
Binds to F-actin in a calcium-independent manner. Has no direct effect on actin depolymerization. Acts as a chaperone for ALOX5 (5LO), influencing both its stability and activity in leukotrienes synthesis.
Tissue Specificity Widely expressed with highest levels in placenta, lung, kidney and peripheral blood leukocytes and lower levels in brain, liver and pancreas.
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Isolated Pierre-Robin syndrome DISVEHG7 Definitive Biomarker [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Alzheimer disease 3 DISVT69G Strong Biomarker [2]
Autoimmune disease DISORMTM Strong Biomarker [3]
Bone osteosarcoma DIST1004 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Altered Expression [5]
Breast carcinoma DIS2UE88 Strong Altered Expression [5]
Breast neoplasm DISNGJLM Strong Biomarker [6]
Cleft soft palate DISCN11I Strong Biomarker [7]
Colitis DISAF7DD Strong Biomarker [8]
Colon cancer DISVC52G Strong Biomarker [4]
Colon carcinoma DISJYKUO Strong Biomarker [4]
Epilepsy DISBB28L Strong Genetic Variation [9]
Glioma DIS5RPEH Strong Biomarker [10]
Lung neoplasm DISVARNB Strong Biomarker [11]
Metastatic malignant neoplasm DIS86UK6 Strong Biomarker [12]
Neoplasm DISZKGEW Strong Altered Expression [5]
Obstructive lung disease DIS4IIDZ Strong Biomarker [13]
Oral lichen planus DISVEAJA Strong Biomarker [3]
Osteosarcoma DISLQ7E2 Strong Biomarker [4]
Rheumatoid arthritis DISTSB4J Strong Genetic Variation [14]
Systemic lupus erythematosus DISI1SZ7 Strong Genetic Variation [14]
Triple negative breast cancer DISAMG6N Strong Biomarker [15]
Small-cell lung cancer DISK3LZD moderate Biomarker [16]
Dental caries DISRBCMD Limited Biomarker [17]
Non-small-cell lung cancer DIS5Y6R9 Limited Altered Expression [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Coactosin-like protein (COTL1). [19]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Coactosin-like protein (COTL1). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Coactosin-like protein (COTL1). [21]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Coactosin-like protein (COTL1). [22]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Coactosin-like protein (COTL1). [23]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Coactosin-like protein (COTL1). [24]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Coactosin-like protein (COTL1). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Coactosin-like protein (COTL1). [26]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Coactosin-like protein (COTL1). [27]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Coactosin-like protein (COTL1). [28]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Coactosin-like protein (COTL1). [29]
Progesterone DMUY35B Approved Progesterone decreases the expression of Coactosin-like protein (COTL1). [30]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Coactosin-like protein (COTL1). [31]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Coactosin-like protein (COTL1). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Coactosin-like protein (COTL1). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Coactosin-like protein (COTL1). [33]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Coactosin-like protein (COTL1). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Coactosin-like protein (COTL1). [35]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Coactosin-like protein (COTL1). [36]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Coactosin-like protein (COTL1). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Pathogenesis of Cleft Palate in Robin Sequence: Observations From Prenatal Magnetic Resonance Imaging.J Oral Maxillofac Surg. 2018 May;76(5):1058-1064. doi: 10.1016/j.joms.2017.10.006. Epub 2017 Oct 16.
2 Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins.Mol Neurodegener. 2018 Jun 28;13(1):34. doi: 10.1186/s13024-018-0266-4.
3 Distinct interferon-gamma and interleukin-9 expression in cutaneous and oral lichen planus.J Eur Acad Dermatol Venereol. 2017 May;31(5):880-886. doi: 10.1111/jdv.13989. Epub 2016 Oct 21.
4 The plant alkaloid cryptolepine induces p21WAF1/CIP1 and cell cycle arrest in a human osteosarcoma cell line.Int J Oncol. 2007 Oct;31(4):915-22.
5 Coactosin-like protein CLP/Cotl1 suppresses breast cancer growth through activation of IL-24/PERP and inhibition of non-canonical TGF signaling.Oncogene. 2018 Jan 18;37(3):323-331. doi: 10.1038/onc.2017.342. Epub 2017 Sep 18.
6 Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.Cell Cycle. 2010 Jun 15;9(12):2412-22. doi: 10.4161/cc.9.12.11989. Epub 2010 Jun 15.
7 A Comparative Study of Oral Microbiota in Infants with Complete Cleft Lip and Palate or Cleft Soft Palate.Biomed Res Int. 2017;2017:1460243. doi: 10.1155/2017/1460243. Epub 2017 Mar 14.
8 Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis.PLoS One. 2017 Apr 24;12(4):e0175935. doi: 10.1371/journal.pone.0175935. eCollection 2017.
9 GWAS identifies two susceptibility loci for lamotrigine-induced skin rash in patients with epilepsy.Epilepsy Res. 2015 Sep;115:88-94. doi: 10.1016/j.eplepsyres.2015.05.014. Epub 2015 Jun 2.
10 Dual-modified cationic liposomes loaded with paclitaxel and survivin siRNA for targeted imaging and therapy of cancer stem cells in brain glioma.Drug Deliv. 2018 Nov;25(1):1718-1727. doi: 10.1080/10717544.2018.1494225.
11 Selective Cell Penetrating Peptide-Functionalized Envelope-Type Chimeric Lipopepsomes Boost Systemic RNAi Therapy for Lung Tumors.Adv Healthc Mater. 2019 Aug;8(16):e1900500. doi: 10.1002/adhm.201900500. Epub 2019 Jun 24.
12 Differential expression of PAI-RBP1, C1orf142, and COTL1 in non-small cell lung cancer cell lines with different tumor metastatic potential.J Investig Med. 2012 Apr;60(4):689-94. doi: 10.2310/JIM.0b013e31824963b6.
13 An algorithm for predicting Robin sequence from fetal MRI.Prenat Diagn. 2018 Apr;38(5):357-364. doi: 10.1002/pd.5239. Epub 2018 Mar 13.
14 Polymorphisms of COTL1 gene identified by proteomic approach and their association with autoimmune disorders.Exp Mol Med. 2009 May 31;41(5):354-61. doi: 10.3858/emm.2009.41.5.040.
15 Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling.Chem Biol Interact. 2020 Jan 5;315:108872. doi: 10.1016/j.cbi.2019.108872. Epub 2019 Oct 24.
16 Proteomic analysis of human small cell lung cancer tissues: up-regulation of coactosin-like protein-1.J Proteome Res. 2011 Jan 7;10(1):269-76. doi: 10.1021/pr100714b. Epub 2010 Dec 2.
17 Antibacterial and Antibiofilm Activities of a Novel Synthetic Cyclic Lipopeptide against Cariogenic Streptococcus mutans UA159.Antimicrob Agents Chemother. 2017 Jul 25;61(8):e00776-17. doi: 10.1128/AAC.00776-17. Print 2017 Aug.
18 Genetic and epigenetic silencing of mircoRNA-506-3p enhances COTL1 oncogene expression to foster non-small lung cancer progression.Oncotarget. 2017 Jan 3;8(1):644-657. doi: 10.18632/oncotarget.13501.
19 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
21 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
22 Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors. Toxicol In Vitro. 2015 Sep;29(6):1231-9. doi: 10.1016/j.tiv.2014.10.012. Epub 2014 Oct 24.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
25 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
28 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
29 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
30 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
31 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
32 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
33 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
34 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
35 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
36 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
37 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.