General Information of Drug Off-Target (DOT) (ID: OT79PQUN)

DOT Name Eukaryotic translation initiation factor 5 (EIF5)
Synonyms eIF-5
Gene Name EIF5
Related Disease
Malaria ( )
Male breast carcinoma ( )
Alzheimer disease ( )
Chronic hepatitis B virus infection ( )
Colorectal carcinoma ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Epithelial ovarian cancer ( )
Lung adenocarcinoma ( )
Neoplasm ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Rectal carcinoma ( )
Schizophrenia ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
UniProt ID
IF5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2E9H; 2G2K; 2IU1
Pfam ID
PF01873 ; PF02020
Sequence
MSVNVNRSVSDQFYRYKMPRLIAKVEGKGNGIKTVIVNMVDVAKALNRPPTYPTKYFGCE
LGAQTQFDVKNDRYIVNGSHEANKLQDMLDGFIKKFVLCPECENPETDLHVNPKKQTIGN
SCKACGYRGMLDTHHKLCTFILKNPPENSDSGTGKKEKEKKNRKGKDKENGSVSSSETPP
PPPPPNEINPPPHTMEEEEDDDWGEDTTEEAQRRRMDEISDHAKVLTLSDDLERTIEERV
NILFDFVKKKKEEGVIDSSDKEIVAEAERLDVKAMGPLVLTEVLFNEKIREQIKKYRRHF
LRFCHNNKKAQRYLLHGLECVVAMHQAQLISKIPHILKEMYDADLLEEEVIISWSEKASK
KYVSKELAKEIRVKAEPFIKWLKEAEEESSGGEEEDEDENIEVVYSKAASVPKVETVKSD
NKDDDIDIDAI
Function
Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon. In this complex, acts as a GTPase-activating protein, by promoting GTP hydrolysis by eIF2G (EIF2S3). During scanning, interacts with both EIF1 (via its C-terminal domain (CTD)) and EIF1A (via its NTD). This interaction with EIF1A contributes to the maintenance of EIF1 within the open 43S PIC. When start codon is recognized, EIF5, via its NTD, induces eIF2G (EIF2S3) to hydrolyze the GTP. Start codon recognition also induces a conformational change of the PIC to a closed state. This change increases the affinity of EIF5-CTD for EIF2-beta (EIF2S2), which allows the release, by an indirect mechanism, of EIF1 from the PIC. Finally, EIF5 stabilizes the PIC in its closed conformation.
Reactome Pathway
GTP hydrolysis and joining of the 60S ribosomal subunit (R-HSA-72706 )
Ribosomal scanning and start codon recognition (R-HSA-72702 )

Molecular Interaction Atlas (MIA) of This DOT

16 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Malaria DISQ9Y50 Definitive Biomarker [1]
Male breast carcinoma DISUNQ2Q Definitive Biomarker [2]
Alzheimer disease DISF8S70 Strong Biomarker [3]
Chronic hepatitis B virus infection DISHL4NT Strong Altered Expression [4]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [5]
Endometrial cancer DISW0LMR Strong Biomarker [6]
Endometrial carcinoma DISXR5CY Strong Biomarker [6]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [7]
Lung adenocarcinoma DISD51WR Strong Biomarker [8]
Neoplasm DISZKGEW Strong Altered Expression [8]
Ovarian cancer DISZJHAP Strong Biomarker [7]
Ovarian neoplasm DISEAFTY Strong Biomarker [7]
Rectal carcinoma DIS8FRR7 Strong Biomarker [5]
Schizophrenia DISSRV2N Strong Biomarker [9]
Hepatitis B virus infection DISLQ2XY moderate Altered Expression [10]
Hepatocellular carcinoma DIS0J828 moderate Altered Expression [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [11]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [12]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [13]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [15]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [16]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [17]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [18]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [20]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Eukaryotic translation initiation factor 5 (EIF5). [21]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Eukaryotic translation initiation factor 5 (EIF5). [22]
Marinol DM70IK5 Approved Marinol decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [23]
Progesterone DMUY35B Approved Progesterone increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [24]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [25]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [17]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Eukaryotic translation initiation factor 5 (EIF5). [22]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [26]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [27]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [28]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [29]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [17]
APR-246 DMNFADH Phase 2 APR-246 increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [30]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [32]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [33]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [35]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [37]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [38]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [39]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [40]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Eukaryotic translation initiation factor 5 (EIF5). [41]
biochanin A DM0HPWY Investigative biochanin A decreases the expression of Eukaryotic translation initiation factor 5 (EIF5). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Eukaryotic translation initiation factor 5 (EIF5). [19]
G1 DMTV42K Phase 1/2 G1 decreases the phosphorylation of Eukaryotic translation initiation factor 5 (EIF5). [31]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Eukaryotic translation initiation factor 5 (EIF5). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Eukaryotic translation initiation factor 5 (EIF5). [19]
------------------------------------------------------------------------------------

References

1 Deoxyhypusine hydroxylase from Plasmodium vivax, the neglected human malaria parasite: molecular cloning, expression and specific inhibition by the 5-LOX inhibitor zileuton.PLoS One. 2013;8(3):e58318. doi: 10.1371/journal.pone.0058318. Epub 2013 Mar 7.
2 A Case-Matched Gender Comparison Transcriptomic Screen Identifies eIF4E and eIF5 as Potential Prognostic Markers in Male Breast Cancer.Clin Cancer Res. 2017 May 15;23(10):2575-2583. doi: 10.1158/1078-0432.CCR-16-1952. Epub 2016 Dec 16.
3 Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome.Brain Pathol. 2016 Sep;26(5):593-605. doi: 10.1111/bpa.12335. Epub 2015 Dec 14.
4 New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors.Eur J Cancer. 2017 Sep;83:56-70. doi: 10.1016/j.ejca.2017.06.003. Epub 2017 Jul 14.
5 Separation of low and high grade colon and rectum carcinoma by eukaryotic translation initiation factors 1, 5 and 6.Oncotarget. 2017 Sep 5;8(60):101224-101243. doi: 10.18632/oncotarget.20642. eCollection 2017 Nov 24.
6 The Prognostic Significance of Eukaryotic Translation Initiation Factors (eIFs) in Endometrial Cancer.Int J Mol Sci. 2019 Dec 6;20(24):6169. doi: 10.3390/ijms20246169.
7 Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer.Cancer Res. 2001 May 1;61(9):3806-9.
8 Proteomic analysis of eIF-5A in lung adenocarcinomas.Proteomics. 2003 Apr;3(4):496-504. doi: 10.1002/pmic.200390063.
9 Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011 Jul 10;43(9):860-3. doi: 10.1038/ng.886.
10 CircRNA-100338 Is Associated With mTOR Signaling Pathway and Poor Prognosis in Hepatocellular Carcinoma.Front Oncol. 2019 May 14;9:392. doi: 10.3389/fonc.2019.00392. eCollection 2019.
11 A genomic approach to predict synergistic combinations for breast cancer treatment. Pharmacogenomics J. 2013 Feb;13(1):94-104. doi: 10.1038/tpj.2011.48. Epub 2011 Nov 15.
12 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
13 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicol In Vitro. 2021 Jun;73:105107. doi: 10.1016/j.tiv.2021.105107. Epub 2021 Feb 3.
17 Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell Biochem. 2006 Aug 1;98(5):1163-84.
18 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
21 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
22 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
23 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
24 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
25 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
26 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
27 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
28 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
29 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
30 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
31 The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci. 2016 Jun;151(2):434-46. doi: 10.1093/toxsci/kfw057. Epub 2016 Mar 29.
32 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
33 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
34 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
35 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
36 Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation. Respir Res. 2005 Aug 8;6(1):89. doi: 10.1186/1465-9921-6-89.
37 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
38 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
39 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
40 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
41 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
42 Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate. 2002 Aug 1;52(3):201-12.