General Information of Drug Off-Target (DOT) (ID: OT9799VN)

DOT Name SCL-interrupting locus protein (STIL)
Synonyms TAL-1-interrupting locus protein
Gene Name STIL
Related Disease
Autosomal recessive primary microcephaly ( )
Hepatic encephalopathy ( )
Wilms tumor ( )
Acute leukaemia ( )
Acute undifferentiated leukemia ( )
Advanced cancer ( )
Anal intraepithelial neoplasia ( )
Cervical cancer ( )
Cervical carcinoma ( )
Cervical Intraepithelial neoplasia ( )
Epithelial ovarian cancer ( )
Human papillomavirus infection ( )
Leukemia ( )
Lissencephaly spectrum disorders ( )
Lymphoblastic lymphoma ( )
Lymphoma, non-Hodgkin, familial ( )
Microcephaly 6, primary, autosomal recessive ( )
Microcephaly 7, primary, autosomal recessive ( )
Neoplasm ( )
Non-hodgkin lymphoma ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Small lymphocytic lymphoma ( )
T-cell acute lymphoblastic leukaemia ( )
Carcinoma ( )
Intellectual disability ( )
Intrahepatic cholangiocarcinoma ( )
Isolated congenital microcephaly ( )
Lobar holoprosencephaly ( )
Methicillin-resistant staphylococci infection ( )
Pancreatic ductal carcinoma ( )
Patent ductus arteriosus ( )
Squamous cell carcinoma ( )
Vulvar squamous intraepithelial lesion ( )
Holoprosencephaly ( )
Acute lymphocytic leukaemia ( )
Childhood acute lymphoblastic leukemia ( )
Gastric cancer ( )
Stomach cancer ( )
Arrhythmia ( )
Disseminated intravascular coagulation ( )
leukaemia ( )
Nasopharyngeal carcinoma ( )
UniProt ID
STIL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4YYP; 5LHW; 5LHZ; 8OYK; 8OYL
Pfam ID
PF15253
Sequence
MEPIYPFARPQMNTRFPSSRMVPFHFPPSKCALWNPTPTGDFIYLHLSYYRNPKLVVTEK
TIRLAYRHAKQNKKNSSCFLLGSLTADEDEEGVTLTVDRFDPGREVPECLEITPTASLPG
DFLIPCKVHTQELCSREMIVHSVDDFSSALKALQCHICSKDSLDCGKLLSLRVHITSRES
LDSVEFDLHWAAVTLANNFKCTPVKPIPIIPTALARNLSSNLNISQVQGTYKYGYLTMDE
TRKLLLLLESDPKVYSLPLVGIWLSGITHIYSPQVWACCLRYIFNSSVQERVFSESGNFI
IVLYSMTHKEPEFYECFPCDGKIPDFRFQLLTSKETLHLFKNVEPPDKNPIRCELSAESQ
NAETEFFSKASKNFSIKRSSQKLSSGKMPIHDHDSGVEDEDFSPRPIPSPHPVSQKISKI
QPSVPELSLVLDGNFIESNPLPTPLEMVNNENPPLINHLEHLKPLQPQLYDEKHSPEVEA
GEPSLRGIPNQLNQDKPALLRHCKVRQPPAYKKGNPHTRNSIKPSSHNGPSHDIFEKLQT
VSAGNVQNEEYPIRPSTLNSRQSSLAPQSQPHDFVFSPHNSGRPMELQIPTPPLPSYCST
NVCRCCQHHSHIQYSPLNSWQGANTVGSIQDVQSEALQKHSLFHPSGCPALYCNAFCSSS
SPIALRPQGDMGSCSPHSNIEPSPVARPPSHMDLCNPQPCTVCMHTPKTESDNGMMGLSP
DAYRFLTEQDRQLRLLQAQIQRLLEAQSLMPCSPKTTAVEDTVQAGRQMELVSVEAQSSP
GLHMRKGVSIAVSTGASLFWNAAGEDQEPDSQMKQDDTKISSEDMNFSVDINNEVTSLPG
SASSLKAVDIPSFEESNIAVEEEFNQPLSVSNSSLVVRKEPDVPVFFPSGQLAESVSMCL
QTGPTGGASNNSETSEEPKIEHVMQPLLHQPSDNQKIYQDLLGQVNHLLNSSSKETEQPS
TKAVIISHECTRTQNVYHTKKKTHHSRLVDKDCVLNATLKQLRSLGVKIDSPTKVKKNAH
NVDHASVLACISPEAVISGLNCMSFANVGMSGLSPNGVDLSMEANAIALKYLNENQLSQL
SVTRSNQNNCDPFSLLHINTDRSTVGLSLISPNNMSFATKKYMKRYGLLQSSDNSEDEEE
PPDNADSKSEYLLNQNLRSIPEQLGGQKEPSKNDHEIINCSNCESVGTNADTPVLRNITN
EVLQTKAKQQLTEKPAFLVKNLKPSPAVNLRTGKAEFTQHPEKENEGDITIFPESLQPSE
TLKQMNSMNSVGTFLDVKRLRQLPKLF
Function
Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1. Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CENPJ to the base of the procentriole to initiate procentriole assembly. In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility.
Tissue Specificity Expressed in all hematopoietic tissues and cell lines. Highly expressed in a variety of tumors characterized by increased mitotic activity with highest expression in lung cancer.

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal recessive primary microcephaly DIS29IE3 Definitive Autosomal recessive [1]
Hepatic encephalopathy DISEAKAN Definitive Biomarker [2]
Wilms tumor DISB6T16 Definitive Altered Expression [3]
Acute leukaemia DISDQFDI Strong Biomarker [4]
Acute undifferentiated leukemia DISJ4SSG Strong Genetic Variation [5]
Advanced cancer DISAT1Z9 Strong Biomarker [6]
Anal intraepithelial neoplasia DISJ0JW3 Strong Biomarker [7]
Cervical cancer DISFSHPF Strong Biomarker [8]
Cervical carcinoma DIST4S00 Strong Biomarker [8]
Cervical Intraepithelial neoplasia DISXP757 Strong Biomarker [9]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [10]
Human papillomavirus infection DISX61LX Strong Biomarker [11]
Leukemia DISNAKFL Strong Biomarker [12]
Lissencephaly spectrum disorders DISBCZL7 Strong Genetic Variation [13]
Lymphoblastic lymphoma DISB9ZYC Strong Genetic Variation [14]
Lymphoma, non-Hodgkin, familial DISCXYIZ Strong Biomarker [15]
Microcephaly 6, primary, autosomal recessive DISWFNUJ Strong Genetic Variation [16]
Microcephaly 7, primary, autosomal recessive DISY36JJ Strong Autosomal recessive [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Non-hodgkin lymphoma DISS2Y8A Strong Biomarker [15]
Ovarian cancer DISZJHAP Strong Biomarker [10]
Ovarian neoplasm DISEAFTY Strong Biomarker [10]
Prostate cancer DISF190Y Strong Biomarker [18]
Prostate carcinoma DISMJPLE Strong Biomarker [18]
Small lymphocytic lymphoma DIS30POX Strong Biomarker [15]
T-cell acute lymphoblastic leukaemia DIS17AI2 Strong Biomarker [4]
Carcinoma DISH9F1N moderate Biomarker [11]
Intellectual disability DISMBNXP moderate Genetic Variation [19]
Intrahepatic cholangiocarcinoma DIS6GOC8 moderate Biomarker [20]
Isolated congenital microcephaly DISUXHZ6 moderate Biomarker [21]
Lobar holoprosencephaly DISVK1YW moderate Genetic Variation [22]
Methicillin-resistant staphylococci infection DIS6DRDZ moderate Biomarker [23]
Pancreatic ductal carcinoma DIS26F9Q moderate Altered Expression [24]
Patent ductus arteriosus DIS9P8YS moderate Biomarker [24]
Squamous cell carcinoma DISQVIFL moderate Biomarker [25]
Vulvar squamous intraepithelial lesion DISULIZR moderate Biomarker [11]
Holoprosencephaly DISR35EC Supportive Autosomal recessive [26]
Acute lymphocytic leukaemia DISPX75S Disputed Genetic Variation [27]
Childhood acute lymphoblastic leukemia DISJ5D6U Disputed Genetic Variation [27]
Gastric cancer DISXGOUK Disputed Altered Expression [28]
Stomach cancer DISKIJSX Disputed Altered Expression [28]
Arrhythmia DISFF2NI Limited Biomarker [29]
Disseminated intravascular coagulation DISCAVOZ Limited Biomarker [30]
leukaemia DISS7D1V Limited Biomarker [30]
Nasopharyngeal carcinoma DISAOTQ0 Limited Biomarker [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of SCL-interrupting locus protein (STIL). [32]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of SCL-interrupting locus protein (STIL). [33]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of SCL-interrupting locus protein (STIL). [34]
Estradiol DMUNTE3 Approved Estradiol increases the expression of SCL-interrupting locus protein (STIL). [35]
Quercetin DM3NC4M Approved Quercetin decreases the expression of SCL-interrupting locus protein (STIL). [36]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of SCL-interrupting locus protein (STIL). [37]
Testosterone DM7HUNW Approved Testosterone decreases the expression of SCL-interrupting locus protein (STIL). [37]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of SCL-interrupting locus protein (STIL). [38]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of SCL-interrupting locus protein (STIL). [39]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of SCL-interrupting locus protein (STIL). [40]
Palbociclib DMD7L94 Approved Palbociclib decreases the expression of SCL-interrupting locus protein (STIL). [41]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of SCL-interrupting locus protein (STIL). [42]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of SCL-interrupting locus protein (STIL). [43]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of SCL-interrupting locus protein (STIL). [44]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of SCL-interrupting locus protein (STIL). [45]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of SCL-interrupting locus protein (STIL). [46]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of SCL-interrupting locus protein (STIL). [48]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of SCL-interrupting locus protein (STIL). [35]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of SCL-interrupting locus protein (STIL). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of SCL-interrupting locus protein (STIL). [47]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Alogliptin abates memory injuries of hepatic encephalopathy induced by acute paracetamol intoxication via switching-off autophagy-related apoptosis.Life Sci. 2018 Dec 15;215:11-21. doi: 10.1016/j.lfs.2018.10.069. Epub 2018 Nov 1.
3 The clinical significance of monitoring the expression of the SIL-TAL1 fusion gene in T-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation.Int J Lab Hematol. 2017 Dec;39(6):613-619. doi: 10.1111/ijlh.12711. Epub 2017 Jul 24.
4 Origins of STIL-TAL1 fusion genes in children who later developed paediatric T-cell acute lymphoblastic leukaemia: An investigation of neonatal blood spots.Pediatr Blood Cancer. 2018 Nov;65(11):e27310. doi: 10.1002/pbc.27310. Epub 2018 Jul 3.
5 Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints.J Biol Chem. 2001 Aug 3;276(31):29126-33. doi: 10.1074/jbc.M103797200. Epub 2001 Jun 4.
6 Indispensable role of STIL in the regulation of cancer cell motility through the lamellipodial accumulation of ARHGEF7-PAK1 complex.Oncogene. 2020 Feb;39(9):1931-1943. doi: 10.1038/s41388-019-1115-9. Epub 2019 Nov 21.
7 Does the vaginal microbiota play a role in the development of cervical cancer?.Transl Res. 2017 Jan;179:168-182. doi: 10.1016/j.trsl.2016.07.004. Epub 2016 Jul 15.
8 CADM1, MAL, and miR124 Promoter Methylation as Biomarkers of Transforming Cervical Intrapithelial Lesions.Int J Mol Sci. 2019 May 7;20(9):2262. doi: 10.3390/ijms20092262.
9 Utility of p16 Immunohistochemistry in Evaluating Negative Cervical Biopsies Following High-risk Pap Test Results.Am J Surg Pathol. 2018 Jan;42(1):69-75. doi: 10.1097/PAS.0000000000000960.
10 Targeting the centriolar replication factor STIL synergizes with DNA damaging agents for treatment of ovarian cancer.Oncotarget. 2017 Apr 18;8(16):27380-27392. doi: 10.18632/oncotarget.16068.
11 Carcinogenic HPV infection in the cervical squamo-columnar junction.J Pathol. 2015 Jul;236(3):265-71. doi: 10.1002/path.4533. Epub 2015 Apr 27.
12 The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia.Leukemia. 2018 Sep;32(9):1984-1993. doi: 10.1038/s41375-018-0046-8. Epub 2018 Mar 20.
13 Genetics and biology of microcephaly and lissencephaly.Semin Pediatr Neurol. 2009 Sep;16(3):120-6. doi: 10.1016/j.spen.2009.07.001.
14 An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice.EMBO J. 1997 May 1;16(9):2408-19. doi: 10.1093/emboj/16.9.2408.
15 Detection of membrane and soluble interleukin-6 receptor in lymphoid malignancies.Br J Haematol. 1995 Dec;91(4):871-7. doi: 10.1111/j.1365-2141.1995.tb05403.x.
16 A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet. 2010 Dec;47(12):823-8. doi: 10.1136/jmg.2009.076398. Epub 2010 Oct 26.
17 The SIL gene is required for mouse embryonic axial development and left-right specification. Nature. 1999 Jun 17;399(6737):691-4. doi: 10.1038/21429.
18 The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer.Gene. 2019 Feb 20;686:220-227. doi: 10.1016/j.gene.2018.11.048. Epub 2018 Nov 16.
19 Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet. 2009 Feb;84(2):286-90. doi: 10.1016/j.ajhg.2009.01.017.
20 Analysis of cytosine-adenine repeats in P1 promoter region of IGF-1 gene in peripheral blood cells and cervical tissue samples of females with cervical intraepithelial lesions and squamous cervical cancer.Mol Med Rep. 2015 Feb;11(2):766-74. doi: 10.3892/mmr.2014.2916. Epub 2014 Nov 10.
21 Homozygous STIL mutation causes holoprosencephaly and microcephaly in two siblings.PLoS One. 2015 Feb 6;10(2):e0117418. doi: 10.1371/journal.pone.0117418. eCollection 2015.
22 STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly.Hum Genet. 2015 Jan;134(1):45-51. doi: 10.1007/s00439-014-1487-4. Epub 2014 Sep 14.
23 Silver resistance in MRSA isolated from wound and nasal sources in humans and animals.Int Wound J. 2009 Feb;6(1):32-8. doi: 10.1111/j.1742-481X.2008.00563.x.
24 SCL/TAL1 interrupting locus derepresses GLI1 from the negative control of suppressor-of-fused in pancreatic cancer cell.Cancer Res. 2008 Oct 1;68(19):7723-9. doi: 10.1158/0008-5472.CAN-07-6661.
25 Aberrant DNA methylation of DLX4 and SIM1 is a predictive marker for disease progression of uterine cervical low-grade squamous intraepithelial lesion.Diagn Cytopathol. 2015 Jun;43(6):462-70. doi: 10.1002/dc.23256. Epub 2015 Jan 22.
26 Recent advances in understanding inheritance of holoprosencephaly. Am J Med Genet C Semin Med Genet. 2018 Jun;178(2):258-269. doi: 10.1002/ajmg.c.31619. Epub 2018 May 22.
27 Prevalence of common fusion transcripts in acute lymphoblastic leukemia: A report of 304 cases.Asia Pac J Clin Oncol. 2015 Dec;11(4):293-8. doi: 10.1111/ajco.12400. Epub 2015 Aug 12.
28 Knockdown of STIL suppresses the progression of gastric cancer by down-regulating the IGF-1/PI3K/AKT pathway.J Cell Mol Med. 2019 Aug;23(8):5566-5575. doi: 10.1111/jcmm.14440. Epub 2019 Jun 11.
29 Right ventricular electrical remodeling and arrhythmogenic substrate in rat pulmonary hypertension.Am J Respir Cell Mol Biol. 2013 Sep;49(3):426-36. doi: 10.1165/rcmb.2012-0089OC.
30 SIL-TAL1 rearrangement is related with poor outcome: a study from a Chinese institution.PLoS One. 2013 Sep 9;8(9):e73865. doi: 10.1371/journal.pone.0073865. eCollection 2013.
31 STIL is upregulated in nasopharyngeal carcinoma tissues and promotes nasopharyngeal carcinoma proliferation, migration and invasion.Neoplasma. 2020 Jan;67(1):37-45. doi: 10.4149/neo_2019_190306N192. Epub 2019 Oct 8.
32 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
33 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
34 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
35 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
36 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
37 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
38 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
39 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
40 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
41 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
42 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
43 Resveratrol-induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):596-604. doi: 10.1158/1055-9965.EPI-04-0398.
44 Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol Lett. 2011 Oct 10;206(2):178-88.
45 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
46 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
47 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
48 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.