General Information of Drug Off-Target (DOT) (ID: OTALGS63)

DOT Name Phospholipid-transporting ATPase IC (ATP8B1)
Synonyms EC 7.6.2.1; ATPase class I type 8B member 1; Familial intrahepatic cholestasis type 1; P4-ATPase flippase complex alpha subunit ATP8B1
Gene Name ATP8B1
Related Disease
Carcinoma of liver and intrahepatic biliary tract ( )
Liver cancer ( )
Progressive familial intrahepatic cholestasis type 1 ( )
Alagille syndrome ( )
Cholangiocarcinoma ( )
Colorectal carcinoma ( )
Cystic fibrosis ( )
Hypothyroidism ( )
Intrahepatic cholestasis of pregnancy ( )
Liver cirrhosis ( )
Liver failure ( )
Malabsorption syndrome ( )
Pancreatitis ( )
Paroxysmal nocturnal haemoglobinuria ( )
Progressive familial intrahepatic cholestasis ( )
Progressive familial intrahepatic cholestasis type 3 ( )
Pulmonary fibrosis ( )
Acute myelogenous leukaemia ( )
Cholestasis, intrahepatic, of pregnancy, 1 ( )
Chronic diarrhoea ( )
Diarrhea ( )
Fatty liver disease ( )
Intrahepatic cholestasis ( )
Vibrio cholerae infection ( )
UniProt ID
AT8B1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7PY4; 7VGH; 7VGI; 7VGJ; 8OX4; 8OX5; 8OX6; 8OX7; 8OX8; 8OX9; 8OXA; 8OXB; 8OXC
EC Number
7.6.2.1
Pfam ID
PF13246 ; PF00122 ; PF16212 ; PF16209
Sequence
MSTERDSETTFDEDSQPNDEVVPYSDDETEDELDDQGSAVEPEQNRVNREAEENREPFRK
ECTWQVKANDRKYHEQPHFMNTKFLCIKESKYANNAIKTYKYNAFTFIPMNLFEQFKRAA
NLYFLALLILQAVPQISTLAWYTTLVPLLVVLGVTAIKDLVDDVARHKMDKEINNRTCEV
IKDGRFKVAKWKEIQVGDVIRLKKNDFVPADILLLSSSEPNSLCYVETAELDGETNLKFK
MSLEITDQYLQREDTLATFDGFIECEEPNNRLDKFTGTLFWRNTSFPLDADKILLRGCVI
RNTDFCHGLVIFAGADTKIMKNSGKTRFKRTKIDYLMNYMVYTIFVVLILLSAGLAIGHA
YWEAQVGNSSWYLYDGEDDTPSYRGFLIFWGYIIVLNTMVPISLYVSVEVIRLGQSHFIN
WDLQMYYAEKDTPAKARTTTLNEQLGQIHYIFSDKTGTLTQNIMTFKKCCINGQIYGDHR
DASQHNHNKIEQVDFSWNTYADGKLAFYDHYLIEQIQSGKEPEVRQFFFLLAVCHTVMVD
RTDGQLNYQAASPDEGALVNAARNFGFAFLARTQNTITISELGTERTYNVLAILDFNSDR
KRMSIIVRTPEGNIKLYCKGADTVIYERLHRMNPTKQETQDALDIFANETLRTLCLCYKE
IEEKEFTEWNKKFMAASVASTNRDEALDKVYEEIEKDLILLGATAIEDKLQDGVPETISK
LAKADIKIWVLTGDKKETAENIGFACELLTEDTTICYGEDINSLLHARMENQRNRGGVYA
KFAPPVQESFFPPGGNRALIITGSWLNEILLEKKTKRNKILKLKFPRTEEERRMRTQSKR
RLEAKKEQRQKNFVDLACECSAVICCRVTPKQKAMVVDLVKRYKKAITLAIGDGANDVNM
IKTAHIGVGISGQEGMQAVMSSDYSFAQFRYLQRLLLVHGRWSYIRMCKFLRYFFYKNFA
FTLVHFWYSFFNGYSAQTAYEDWFITLYNVLYTSLPVLLMGLLDQDVSDKLSLRFPGLYI
VGQRDLLFNYKRFFVSLLHGVLTSMILFFIPLGAYLQTVGQDGEAPSDYQSFAVTIASAL
VITVNFQIGLDTSYWTFVNAFSIFGSIALYFGIMFDFHSAGIHVLFPSAFQFTGTASNAL
RQPYIWLTIILAVAVCLLPVVAIRFLSMTIWPSESDKIQKHRKRLKAEEQWQRRQQVFRR
GVSTRRSAYAFSHQRGYADLISSGRSIRKKRSPLDAIVADGTAEYRRTGDS
Function
Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of phospholipids, in particular phosphatidylcholines (PC), from the outer to the inner leaflet of the plasma membrane. May participate in the establishment of the canalicular membrane integrity by ensuring asymmetric distribution of phospholipids in the canicular membrane. Thus may have a role in the regulation of bile acids transport into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both and protect hepatocytes from bile salts. Involved in the microvillus formation in polarized epithelial cells; the function seems to be independent from its flippase activity. Participates in correct apical membrane localization of CDC42, CFTR and SLC10A2. Enables CDC42 clustering at the apical membrane during enterocyte polarization through the interaction between CDC42 polybasic region and negatively charged membrane lipids provided by ATP8B1. Together with TMEM30A is involved in uptake of the synthetic drug alkylphospholipid perifosine. Required for the preservation of cochlear hair cells in the inner ear. May act as cardiolipin transporter during inflammatory injury.
Tissue Specificity Found in most tissues except brain and skeletal muscle. Most abundant in pancreas and small intestine.
Reactome Pathway
Ion transport by P-type ATPases (R-HSA-936837 )

Molecular Interaction Atlas (MIA) of This DOT

24 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Definitive Genetic Variation [1]
Liver cancer DISDE4BI Definitive Genetic Variation [1]
Progressive familial intrahepatic cholestasis type 1 DISU0AJE Definitive Autosomal recessive [2]
Alagille syndrome DIS9DPU8 Strong Biomarker [3]
Cholangiocarcinoma DIS71F6X Strong Genetic Variation [4]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [5]
Cystic fibrosis DIS2OK1Q Strong Biomarker [6]
Hypothyroidism DISR0H6D Strong Genetic Variation [7]
Intrahepatic cholestasis of pregnancy DISMHS5F Strong Genetic Variation [8]
Liver cirrhosis DIS4G1GX Strong Biomarker [9]
Liver failure DISLGEL6 Strong Genetic Variation [10]
Malabsorption syndrome DISGMUVS Strong Biomarker [11]
Pancreatitis DIS0IJEF Strong Biomarker [12]
Paroxysmal nocturnal haemoglobinuria DISBHMYH Strong Genetic Variation [13]
Progressive familial intrahepatic cholestasis DIS3J8HT Strong Biomarker [14]
Progressive familial intrahepatic cholestasis type 3 DISVT2LV Strong Genetic Variation [15]
Pulmonary fibrosis DISQKVLA Strong Biomarker [16]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [17]
Cholestasis, intrahepatic, of pregnancy, 1 DISDFNT4 Limited Unknown [18]
Chronic diarrhoea DISH3PX3 Limited Biomarker [19]
Diarrhea DISWTJQL Limited Biomarker [20]
Fatty liver disease DIS485QZ Limited Biomarker [21]
Intrahepatic cholestasis DISHITDZ Limited Genetic Variation [22]
Vibrio cholerae infection DISW7E3U Limited Biomarker [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [23]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [24]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [25]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [26]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [27]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [28]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [29]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [30]
Progesterone DMUY35B Approved Progesterone decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [31]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [32]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Phospholipid-transporting ATPase IC (ATP8B1). [33]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [34]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [35]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [32]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [36]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [24]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [37]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [39]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [40]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Phospholipid-transporting ATPase IC (ATP8B1). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Phospholipid-transporting ATPase IC (ATP8B1). [38]
------------------------------------------------------------------------------------

References

1 Familial intrahepatic cholestasis: New and wide perspectives.Dig Liver Dis. 2019 Jul;51(7):922-933. doi: 10.1016/j.dld.2019.04.013. Epub 2019 May 16.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Prenatal molecular diagnosis of inherited cholestatic diseases.J Pediatr Gastroenterol Nutr. 2007 Apr;44(4):453-8. doi: 10.1097/MPG.0b013e318036a569.
4 Genetic factors in the pathogenesis of cholangiocarcinoma.Dig Dis. 2011;29(1):93-7. doi: 10.1159/000324688. Epub 2011 Jun 17.
5 Integrated exon level expression analysis of driver genes explain their role in colorectal cancer.PLoS One. 2014 Oct 21;9(10):e110134. doi: 10.1371/journal.pone.0110134. eCollection 2014.
6 Altered hepatobiliary gene expressions in PFIC1: ATP8B1 gene defect is associated with CFTR downregulation.Hepatology. 2006 May;43(5):1125-34. doi: 10.1002/hep.21160.
7 Hypothyroidism Associated with ATP8B1 Deficiency.J Pediatr. 2015 Dec;167(6):1334-9.e1. doi: 10.1016/j.jpeds.2015.08.037. Epub 2015 Sep 15.
8 An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy.Sci Rep. 2017 Sep 18;7(1):11823. doi: 10.1038/s41598-017-11626-x.
9 Liver transplantation for progressive familial intrahepatic cholestasis: clinical and histopathological findings, outcome and impact on growth.Pediatr Transplant. 2007 Sep;11(6):634-40. doi: 10.1111/j.1399-3046.2007.00722.x.
10 Assessment of ATP8B1 Deficiency in Pediatric Patients With Cholestasis Using Peripheral Blood Monocyte-Derived Macrophages.EBioMedicine. 2018 Jan;27:187-199. doi: 10.1016/j.ebiom.2017.10.007. Epub 2017 Oct 7.
11 The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells.Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2378-86. doi: 10.1016/j.bbadis.2014.09.003. Epub 2014 Sep 16.
12 Mutational analysis of ATP8B1 in patients with chronic pancreatitis.PLoS One. 2013 Nov 19;8(11):e80553. doi: 10.1371/journal.pone.0080553. eCollection 2013.
13 Persisting hyperbilirubinemia in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with eculizumab: The role of hepatocanalicular transporter variants.Eur J Haematol. 2017 Oct;99(4):350-356. doi: 10.1111/ejh.12927. Epub 2017 Aug 23.
14 Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis.Hepatology. 2018 Jun;67(6):2320-2337. doi: 10.1002/hep.29585. Epub 2018 Apr 19.
15 DHPLC screening for mutations in progressive familial intrahepatic cholestasis patients.J Hum Genet. 2010 May;55(5):308-13. doi: 10.1038/jhg.2010.28. Epub 2010 Apr 23.
16 Oxidative stress induces club cell proliferation and pulmonary fibrosis in Atp8b1 mutant mice.Aging (Albany NY). 2019 Jan 13;11(1):209-229. doi: 10.18632/aging.101742.
17 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
18 Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet. 2005 Apr;13(4):435-9. doi: 10.1038/sj.ejhg.5201355.
19 Liver retransplantation with external biliary diversion for progressive familial intrahepatic cholestasis type 1: a case report.Pediatr Transplant. 2009 Aug;13(5):611-4. doi: 10.1111/j.1399-3046.2008.00878.x. Epub 2008 Sep 10.
20 Analysis of 19 Highly Conserved Vibrio cholerae Bacteriophages Isolated from Environmental and Patient Sources Over a Twelve-Year Period.Viruses. 2018 Jun 1;10(6):299. doi: 10.3390/v10060299.
21 Biliary drainage as treatment for allograft steatosis following liver transplantation for PFIC-1 disease: A single-center experience.Pediatr Transplant. 2018 Jun;22(4):e13184. doi: 10.1111/petr.13184. Epub 2018 Apr 14.
22 Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters.Am J Pathol. 2017 Dec;187(12):2775-2787. doi: 10.1016/j.ajpath.2017.08.011. Epub 2017 Sep 15.
23 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
24 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
25 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
26 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
27 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
28 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
29 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
30 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
31 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
32 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
33 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
34 Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006 Sep;8(9):758-71.
35 Morphological and molecular course of mitochondrial pathology in cultured human cells exposed long-term to Zidovudine. Environ Mol Mutagen. 2007 Apr-May;48(3-4):179-89. doi: 10.1002/em.20245.
36 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
37 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
38 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
39 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
40 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.