General Information of Drug Off-Target (DOT) (ID: OTB4U1HY)

DOT Name StAR-related lipid transfer protein 13 (STARD13)
Synonyms 46H23.2; Deleted in liver cancer 2 protein; DLC-2; Rho GTPase-activating protein; START domain-containing protein 13; StARD13
Gene Name STARD13
Related Disease
Advanced cancer ( )
Astrocytoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Cystic fibrosis ( )
Endometrial cancer ( )
Endometrial carcinoma ( )
Glioma ( )
Hepatocellular carcinoma ( )
Linear skin defects with multiple congenital anomalies 1 ( )
Liver cancer ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Prostate cancer ( )
Prostate carcinoma ( )
Spinal muscular atrophy ( )
Kidney cancer ( )
Nasopharyngeal carcinoma ( )
Renal carcinoma ( )
Intellectual disability ( )
Bone osteosarcoma ( )
Osteosarcoma ( )
Rectal carcinoma ( )
Rectal neoplasm ( )
Schizophrenia ( )
UniProt ID
STA13_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2H80; 2JW2; 2PSO
Pfam ID
PF00620 ; PF07647 ; PF01852
Sequence
MFSQVPRTPASGCYYLNSMTPEGQEMYLRFDQTTRRSPYRMSRILARHQLVTKIQQEIEA
KEACDWLRAAGFPQYAQLYEDSQFPINIVAVKNDHDFLEKDLVEPLCRRLNTLNKCASMK
LDVNFQRKKGDDSDEEDLCISNKWTFQRTSRRWSRVDDLYTLLPRGDRNGSPGGTGMRNT
TSSESVLTDLSEPEVCSIHSESSGGSDSRSQPGQCCTDNPVMLDAPLVSSSLPQPPRDVL
NHPFHPKNEKPTRARAKSFLKRMETLRGKGAHGRHKGSGRTGGLVISGPMLQQEPESFKA
MQCIQIPNGDLQNSPPPACRKGLPCSGKSSGESSPSEHSSSGVSTPCLKERKCHEANKRG
GMYLEDLDVLAGTALPDAGDQSRMHEFHSQENLVVHIPKDHKPGTFPKALSIESLSPTDS
SNGVNWRTGSISLGREQVPGAREPRLMASCHRASRVSIYDNVPGSHLYASTGDLLDLEKD
DLFPHLDDILQHVNGLQEVVDDWSKDVLPELQTHDTLVGEPGLSTFPSPNQITLDFEGNS
VSEGRTTPSDVERDVTSLNESEPPGVRDRRDSGVGASLTRPNRRLRWNSFQLSHQPRPAP
ASPHISSQTASQLSLLQRFSLLRLTAIMEKHSMSNKHGWTWSVPKFMKRMKVPDYKDKAV
FGVPLIVHVQRTGQPLPQSIQQALRYLRSNCLDQVGLFRKSGVKSRIHALRQMNENFPEN
VNYEDQSAYDVADMVKQFFRDLPEPLFTNKLSETFLHIYQYVSKEQRLQAVQAAILLLAD
ENREVLQTLLCFLNDVVNLVEENQMTPMNLAVCLAPSLFHLNLLKKESSPRVIQKKYATG
KPDQKDLNENLAAAQGLAHMIMECDRLFEVPHELVAQSRNSYVEAEIHVPTLEELGTQLE
ESGATFHTYLNHLIQGLQKEAKEKFKGWVTCSSTDNTDLAFKKVGDGNPLKLWKASVEVE
APPSVVLNRVLRERHLWDEDFVQWKVVETLDRQTEIYQYVLNSMAPHPSRDFVVLRTWKT
DLPKGMCTLVSLSVEHEEAQLLGGVRAVVMDSQYLIEPCGSGKSRLTHICRIDLKGHSPE
WYSKGFGHLCAAEVARIRNSFQPLIAEGPETKI
Function
GTPase-activating protein for RhoA, and perhaps for Cdc42. May be involved in regulation of cytoskeletal reorganization, cell proliferation and cell motility. Acts a tumor suppressor in hepatocellular carcinoma cells.
Tissue Specificity Ubiquitously expressed. Underexpressed in hepatocellular carcinoma cells and some breast cancer cell lines.
Reactome Pathway
RHOB GTPase cycle (R-HSA-9013026 )
RHOC GTPase cycle (R-HSA-9013106 )
CDC42 GTPase cycle (R-HSA-9013148 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Astrocytoma DISL3V18 Strong Biomarker [2]
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Carcinoma DISH9F1N Strong Biomarker [3]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [4]
Colon cancer DISVC52G Strong Biomarker [5]
Colon carcinoma DISJYKUO Strong Biomarker [5]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [6]
Cystic fibrosis DIS2OK1Q Strong Biomarker [7]
Endometrial cancer DISW0LMR Strong Genetic Variation [8]
Endometrial carcinoma DISXR5CY Strong Genetic Variation [8]
Glioma DIS5RPEH Strong Biomarker [9]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [10]
Linear skin defects with multiple congenital anomalies 1 DISNYKBT Strong Biomarker [11]
Liver cancer DISDE4BI Strong Biomarker [4]
Neoplasm DISZKGEW Strong Biomarker [12]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [13]
Prostate cancer DISF190Y Strong Biomarker [14]
Prostate carcinoma DISMJPLE Strong Biomarker [14]
Spinal muscular atrophy DISTLKOB Strong Biomarker [15]
Kidney cancer DISBIPKM moderate Biomarker [16]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [17]
Renal carcinoma DISER9XT moderate Biomarker [16]
Intellectual disability DISMBNXP Disputed Biomarker [18]
Bone osteosarcoma DIST1004 Limited Biomarker [19]
Osteosarcoma DISLQ7E2 Limited Biomarker [19]
Rectal carcinoma DIS8FRR7 Limited Altered Expression [20]
Rectal neoplasm DISB4UZ0 Limited Altered Expression [20]
Schizophrenia DISSRV2N No Known Unknown [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of StAR-related lipid transfer protein 13 (STARD13). [22]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [23]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [24]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of StAR-related lipid transfer protein 13 (STARD13). [25]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [26]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [27]
Estradiol DMUNTE3 Approved Estradiol increases the expression of StAR-related lipid transfer protein 13 (STARD13). [28]
Quercetin DM3NC4M Approved Quercetin decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [29]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of StAR-related lipid transfer protein 13 (STARD13). [30]
Triclosan DMZUR4N Approved Triclosan increases the expression of StAR-related lipid transfer protein 13 (STARD13). [31]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of StAR-related lipid transfer protein 13 (STARD13). [32]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [33]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of StAR-related lipid transfer protein 13 (STARD13). [34]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [35]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of StAR-related lipid transfer protein 13 (STARD13). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [39]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of StAR-related lipid transfer protein 13 (STARD13). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of StAR-related lipid transfer protein 13 (STARD13). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of StAR-related lipid transfer protein 13 (STARD13). [38]
------------------------------------------------------------------------------------

References

1 DLC2 operates as a tumor suppressor gene in breast cancer via the RhoGTPase pathway.Oncol Lett. 2019 Feb;17(2):2107-2116. doi: 10.3892/ol.2018.9874. Epub 2018 Dec 28.
2 The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility.Exp Cell Res. 2014 Feb 15;321(2):109-22. doi: 10.1016/j.yexcr.2013.11.023. Epub 2013 Dec 10.
3 Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications.Clin Cancer Res. 2006 Mar 1;12(5):1412-9. doi: 10.1158/1078-0432.CCR-05-1906.
4 Regulation of white and brown adipocyte differentiation by RhoGAP DLC1.PLoS One. 2017 Mar 30;12(3):e0174761. doi: 10.1371/journal.pone.0174761. eCollection 2017.
5 Effect of StarD13 on colorectal cancer proliferation, motility and invasion.Oncol Rep. 2014 Jan;31(1):505-15. doi: 10.3892/or.2013.2861. Epub 2013 Nov 20.
6 Evaluation of miR-720 prognostic significance in patients with colorectal cancer.Tumour Biol. 2015 Feb;36(2):719-27. doi: 10.1007/s13277-014-2697-z. Epub 2014 Oct 7.
7 Statin-mediated correction of STAT1 signaling and inducible nitric oxide synthase expression in cystic fibrosis epithelial cells.Am J Physiol Lung Cell Mol Physiol. 2003 Dec;285(6):L1286-95. doi: 10.1152/ajplung.00127.2003. Epub 2003 Aug 29.
8 Co-regulatory expression quantitative trait loci mapping: method and application to endometrial cancer.BMC Med Genomics. 2011 Jan 12;4:6. doi: 10.1186/1755-8794-4-6.
9 DLC2 inhibits development of glioma through regulating the expression ratio of TAp73/TAp73.Am J Cancer Res. 2018 Jul 1;8(7):1200-1213. eCollection 2018.
10 Deleted in Liver Cancer 2 (DLC2) protein expression in hepatocellular carcinoma.Eur J Histochem. 2019 Feb 18;63(1):2981. doi: 10.4081/ejh.2019.2981.
11 Functional analysis of ARHGAP6, a novel GTPase-activating protein for RhoA.Hum Mol Genet. 2000 Mar 1;9(4):477-88. doi: 10.1093/hmg/9.4.477.
12 DLC1 SAM domain-binding peptides inhibit cancer cell growth and migration by inactivating RhoA.J Biol Chem. 2020 Jan 10;295(2):645-656. doi: 10.1074/jbc.RA119.011929. Epub 2019 Dec 5.
13 High expression of DLC family proteins predicts better prognosis and inhibits tumor progression in NSCLC.Mol Med Rep. 2019 Jun;19(6):4881-4889. doi: 10.3892/mmr.2019.10146. Epub 2019 Apr 10.
14 Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13.Cell Mol Biol Lett. 2019 Mar 8;24:20. doi: 10.1186/s11658-019-0145-1. eCollection 2019.
15 MicroRNA-125b Promotes Hepatic Stellate Cell Activation and Liver Fibrosis by Activating RhoA Signaling.Mol Ther Nucleic Acids. 2018 Sep 7;12:57-66. doi: 10.1016/j.omtn.2018.04.016. Epub 2018 May 3.
16 Rho GTPase Activating Protein 24 (ARHGAP24) Silencing Promotes Lung Cancer Cell Migration and Invasion by Activating -Catenin Signaling.Med Sci Monit. 2019 Jan 1;25:21-31. doi: 10.12659/MSM.911503.
17 The DLC-1 -29A/T polymorphism is not associated with nasopharyngeal carcinoma risk in Chinese population.Genet Test. 2008 Sep;12(3):345-9. doi: 10.1089/gte.2007.0121.
18 Oligophrenin-1 regulates number, morphology and synaptic properties of adult-born inhibitory interneurons in the olfactory bulb.Hum Mol Genet. 2016 Dec 1;25(23):5198-5211. doi: 10.1093/hmg/ddw340.
19 RNA-binding protein PUM2 suppresses osteosarcoma progression via partly and competitively binding to STARD13 3'UTR with miRNAs.Cell Prolif. 2018 Dec;51(6):e12508. doi: 10.1111/cpr.12508. Epub 2018 Aug 7.
20 Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors.Int J Oncol. 2006 Nov;29(5):1127-32.
21 De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014 Feb 13;506(7487):179-84. doi: 10.1038/nature12929. Epub 2014 Jan 22.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
24 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
25 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
26 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
27 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
28 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
29 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
30 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
31 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
32 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
33 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
34 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
35 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
36 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
39 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
40 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.