General Information of Drug Off-Target (DOT) (ID: OTN7XAUD)

DOT Name Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1)
Synonyms LRR FLII-interacting protein 1; GC-binding factor 2; TAR RNA-interacting protein
Gene Name LRRFIP1
Related Disease
Colorectal carcinoma ( )
Glioblastoma multiforme ( )
Neoplasm ( )
Clear cell renal carcinoma ( )
Hepatocellular carcinoma ( )
Heroin dependence ( )
Intrahepatic cholangiocarcinoma ( )
Myocardial infarction ( )
Psoriasis ( )
Renal cell carcinoma ( )
Stroke ( )
Advanced cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Autoimmune disease ( )
Obesity ( )
Pneumocystis pneumonia ( )
Schizophrenia ( )
UniProt ID
LRRF1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4H22
Pfam ID
PF09738
Sequence
MTSPAAAQSREIDCLSPEAQKLAEARLAAKRAARAEAREIRMKELERQQKEEDSERYSRR
SRRNTSASDEDERMSVGSRGSLRVEERPEKDFTEKGSRNMPGLSAATLASLGGTSSRRGS
GDTSISIDTEASIREIKELNELKDQIQDVEGKYMQGLKEMKDSLAEVEEKYKKAMVSNAQ
LDNEKTNFMYQVDTLKDMLLELEEQLAESRRQYEEKNKEFEREKHAHSILQFQFAEVKEA
LKQREEMLEKHGIILNSEIATNGETSDTLNNVGYQGPTKMTKEELNALKSTGDGTLGRAS
EVEVKNEIVANVGKREILHNTEKEQHTEDTVKDCVDIEVFPAGENTEDQKSSEDTAPFLG
TLAGATYEEQVQSQILESSSLPENTVQVESNEVMGAPDDRTRTPLEPSNCWSDLDGGNHT
ENVGEAAVTQVEEQAGTVASCPLGHSDDTVYHDDKCMVEVPQELETSTGHSLEKEFTNQE
AAEPKEVPAHSTEVGRDHNEEEGEETGLRDEKPIKTEVPGSPAGTEGNCQEATGPSTVDT
QNEPLDMKEPDEEKSDQQGEALDSSQKKTKNKKKKNKKKKSPVPVETLKDVKKELTYQNT
DLSEIKEEEQVKSTDRKSAVEAQNEVTENPKQKIAAESSENVDCPENPKIKLDGKLDQEG
DDVQTAAEEVLADGDTLDFEDDTVQSSGPRAGGEELDEGVAKDNAKIDGATQSSPAEPKS
EDADRCTLPEHESPSQDISDACEAESTERCEMSEHPSQTVRKALDSNSLENDDLSAPGRE
PGHFNPESREDTRGGNEKGKSKEDCTMS
Function
Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding.
Tissue Specificity Ubiquitously expressed.
Reactome Pathway
LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production (R-HSA-3134973 )
Signaling by FGFR1 in disease (R-HSA-5655302 )
Signaling by cytosolic FGFR1 fusion mutants (R-HSA-1839117 )

Molecular Interaction Atlas (MIA) of This DOT

18 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colorectal carcinoma DIS5PYL0 Definitive Biomarker [1]
Glioblastoma multiforme DISK8246 Definitive Altered Expression [2]
Neoplasm DISZKGEW Definitive Genetic Variation [3]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [4]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [5]
Heroin dependence DISQ1H57 Strong Biomarker [6]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Biomarker [7]
Myocardial infarction DIS655KI Strong Genetic Variation [8]
Psoriasis DIS59VMN Strong Biomarker [9]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [4]
Stroke DISX6UHX Strong Biomarker [10]
Advanced cancer DISAT1Z9 moderate Biomarker [11]
Lung cancer DISCM4YA moderate Biomarker [12]
Lung carcinoma DISTR26C moderate Biomarker [12]
Autoimmune disease DISORMTM Limited Biomarker [10]
Obesity DIS47Y1K Limited Biomarker [10]
Pneumocystis pneumonia DISFSOM3 Limited Biomarker [13]
Schizophrenia DISSRV2N No Known Unknown [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [15]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [16]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [17]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [18]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [20]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [21]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide affects the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [24]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [25]
Marinol DM70IK5 Approved Marinol increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [26]
Selenium DM25CGV Approved Selenium decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [27]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [29]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [30]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [31]
Nicotine DMWX5CO Approved Nicotine increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [32]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [33]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [34]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [35]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [27]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [39]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
8 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [22]
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [23]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [36]
TAK-243 DM4GKV2 Phase 1 TAK-243 affects the sumoylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [37]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [28]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 GCF2/LRRFIP1 promotes colorectal cancer metastasis and liver invasion through integrin-dependent RhoA activation.Cancer Lett. 2012 Dec 1;325(1):99-107. doi: 10.1016/j.canlet.2012.06.012. Epub 2012 Jun 28.
2 Higher LRRFIP1 expression in glioblastoma multiforme is associated with better response to teniposide, a type II topoisomerase inhibitor.Biochem Biophys Res Commun. 2014 Apr 18;446(4):1261-7. doi: 10.1016/j.bbrc.2014.03.105. Epub 2014 Mar 29.
3 Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat.Chem Biol. 2009 Apr 24;16(4):391-400. doi: 10.1016/j.chembiol.2009.02.006.
4 MLN4924 (Pevonedistat), a protein neddylation inhibitor, suppresses proliferation and migration of human clear cell renal cell carcinoma.Sci Rep. 2017 Jul 17;7(1):5599. doi: 10.1038/s41598-017-06098-y.
5 Knockdown of GCF2/LRRFIP1 by RNAi causes cell growth inhibition and increased apoptosis in human hepatoma HepG2 cells.Asian Pac J Cancer Prev. 2014;15(6):2753-8. doi: 10.7314/apjcp.2014.15.6.2753.
6 Weighted gene co-expression network analysis to explore the mechanism of heroin addiction in human nucleus accumbens.J Cell Biochem. 2020 Feb;121(2):1870-1879. doi: 10.1002/jcb.29422. Epub 2019 Nov 6.
7 Knockdown of Nedd8conjugating enzyme UBE2M suppresses the proliferation and induces the apoptosis of intrahepatic cholangiocarcinoma cells.Oncol Rep. 2019 Dec;42(6):2670-2679. doi: 10.3892/or.2019.7327. Epub 2019 Sep 20.
8 Transcription profiling in human platelets reveals LRRFIP1 as a novel protein regulating platelet function.Blood. 2010 Nov 25;116(22):4646-56. doi: 10.1182/blood-2010-04-280925. Epub 2010 Sep 10.
9 Fumaric acid esters for psoriasis: a systematic review.Ir J Med Sci. 2017 Feb;186(1):161-177. doi: 10.1007/s11845-016-1470-2. Epub 2016 Jun 7.
10 Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases.Cells. 2019 Jan 31;8(2):108. doi: 10.3390/cells8020108.
11 Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/-catenin signaling pathway.Cancer Lett. 2015 Aug 28;365(1):132-40. doi: 10.1016/j.canlet.2015.05.023. Epub 2015 Jun 3.
12 Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.PLoS One. 2016 May 12;11(5):e0155660. doi: 10.1371/journal.pone.0155660. eCollection 2016.
13 GC-binding factor 2 interacts with dishevelled and regulates Wnt signaling pathways in human carcinoma cell lines.Int J Cancer. 2011 Oct 1;129(7):1599-610. doi: 10.1002/ijc.25837. Epub 2011 Mar 8.
14 Identification of new schizophrenia susceptibility loci in an ethnically homogeneous, family-based, Arab-Israeli sample. FASEB J. 2011 Nov;25(11):4011-23. doi: 10.1096/fj.11-184937. Epub 2011 Jul 27.
15 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
16 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
17 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
18 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
22 Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics. 2014 May;9(5):774-82. doi: 10.4161/epi.28153. Epub 2014 Feb 13.
23 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
24 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
25 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
26 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
27 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
28 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
29 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
30 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
31 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
32 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
33 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
34 Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007 Dec 15;67(24):12007-17. doi: 10.1158/0008-5472.CAN-07-2464.
35 Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):166-75.
36 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
37 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
38 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
39 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.