General Information of Drug Off-Target (DOT) (ID: OTWA6M5K)

DOT Name PDZK1-interacting protein 1 (PDZK1IP1)
Synonyms 17 kDa membrane-associated protein; Protein DD96
Gene Name PDZK1IP1
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Adenocarcinoma ( )
Adenoma ( )
Atopic dermatitis ( )
Atrial fibrillation ( )
Breast neoplasm ( )
Intrahepatic cholangiocarcinoma ( )
Lung adenocarcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Mantle cell lymphoma ( )
Neoplasm ( )
Ovarian cancer ( )
Plasma cell myeloma ( )
Prostate cancer ( )
Prostate neoplasm ( )
Psoriasis ( )
Rectal neoplasm ( )
Skin disease ( )
Advanced cancer ( )
Colon adenoma ( )
Ductal breast carcinoma in situ ( )
Hepatocellular carcinoma ( )
Precancerous condition ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Carcinoma ( )
Dental caries ( )
Mesothelioma ( )
Ulcerative colitis ( )
UniProt ID
PDZ1I_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7VSI; 7WMV; 7YNI; 7YNJ; 7YNK; 8HB0; 8HDH; 8HEZ; 8HG7; 8HIN
Pfam ID
PF15807
Sequence
MSALSLLILGLLTAVPPASCQQGLGNLQPWMQGLIAVAVFLVLVAIAFAVNHFWCQEEPE
PAHMILTVGNKADGVLVGTDGRYSSMAASFRSSEHENAYENVPEEEGKVRSTPM
Function May play an important role in tumor biology.
Tissue Specificity
Expressed at significant levels only in a single epithelial cell population, the proximal tubular epithelial cells of the kidney. Diffusely expressed in various carcinomas originating from kidney, colon, lung and breast.

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Definitive Altered Expression [1]
Breast carcinoma DIS2UE88 Definitive Altered Expression [1]
Adenocarcinoma DIS3IHTY Strong Altered Expression [2]
Adenoma DIS78ZEV Strong Biomarker [3]
Atopic dermatitis DISTCP41 Strong Biomarker [4]
Atrial fibrillation DIS15W6U Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Altered Expression [6]
Intrahepatic cholangiocarcinoma DIS6GOC8 Strong Altered Expression [7]
Lung adenocarcinoma DISD51WR Strong Biomarker [2]
Lung cancer DISCM4YA Strong Biomarker [8]
Lung carcinoma DISTR26C Strong Biomarker [8]
Lung neoplasm DISVARNB Strong Biomarker [2]
Mantle cell lymphoma DISFREOV Strong Biomarker [9]
Neoplasm DISZKGEW Strong Biomarker [10]
Ovarian cancer DISZJHAP Strong Biomarker [11]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [9]
Prostate cancer DISF190Y Strong Biomarker [12]
Prostate neoplasm DISHDKGQ Strong Biomarker [12]
Psoriasis DIS59VMN Strong Altered Expression [13]
Rectal neoplasm DISB4UZ0 Strong Biomarker [14]
Skin disease DISDW8R6 Strong Altered Expression [4]
Advanced cancer DISAT1Z9 moderate Altered Expression [8]
Colon adenoma DISPMZ3U moderate Altered Expression [15]
Ductal breast carcinoma in situ DISLCJY7 moderate Altered Expression [15]
Hepatocellular carcinoma DIS0J828 moderate Biomarker [16]
Precancerous condition DISV06FL moderate Altered Expression [15]
Thyroid cancer DIS3VLDH moderate Altered Expression [17]
Thyroid gland carcinoma DISMNGZ0 moderate Altered Expression [18]
Thyroid tumor DISLVKMD moderate Altered Expression [17]
Carcinoma DISH9F1N Limited Altered Expression [14]
Dental caries DISRBCMD Limited Genetic Variation [19]
Mesothelioma DISKWK9M Limited Genetic Variation [20]
Ulcerative colitis DIS8K27O Limited Altered Expression [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [22]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [23]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [25]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [26]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of PDZK1-interacting protein 1 (PDZK1IP1). [27]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [28]
Testosterone DM7HUNW Approved Testosterone increases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [28]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [29]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [30]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [31]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [33]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [35]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of PDZK1-interacting protein 1 (PDZK1IP1). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of PDZK1-interacting protein 1 (PDZK1IP1). [34]
------------------------------------------------------------------------------------

References

1 Combined Fascin-1 and MAP17 Expression in Breast Cancer Identifies Patients with High Risk for Disease Recurrence.Mol Diagn Ther. 2019 Oct;23(5):635-644. doi: 10.1007/s40291-019-00411-3.
2 MAP17 predicts sensitivity to platinum-based therapy, EGFR inhibitors and the proteasome inhibitor bortezomib in lung adenocarcinoma.J Exp Clin Cancer Res. 2018 Aug 17;37(1):195. doi: 10.1186/s13046-018-0871-7.
3 Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points.Am J Surg Pathol. 2006 Dec;30(12):1491-501. doi: 10.1097/01.pas.0000213313.36306.85.
4 MAP17 is associated with the T-helper cell cytokine-induced down-regulation of filaggrin transcription in human keratinocytes.Exp Dermatol. 2010 Apr;19(4):355-62. doi: 10.1111/j.1600-0625.2009.00902.x. Epub 2009 Jul 8.
5 Paroxysmal Atrial Fibrillation in the Course of Acute Pulmonary Embolism: Clinical Significance and Impact on Prognosis.Biomed Res Int. 2017;2017:5049802. doi: 10.1155/2017/5049802. Epub 2017 Feb 9.
6 p38 limits the contribution of MAP17 to cancer progression in breast tumors.Oncogene. 2012 Oct 11;31(41):4447-59. doi: 10.1038/onc.2011.619. Epub 2012 Jan 23.
7 Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.Mol Med Rep. 2016 Jun;13(6):4786-90. doi: 10.3892/mmr.2016.5110. Epub 2016 Apr 12.
8 EGFR-TKI resistance and MAP17 are associated with cancer stem cell like properties.Oncol Lett. 2018 May;15(5):6655-6665. doi: 10.3892/ol.2018.8129. Epub 2018 Feb 27.
9 MAP17 (PDZKIP1) Expression Determines Sensitivity to the Proteasomal Inhibitor Bortezomib by Preventing Cytoprotective Autophagy and NFB Activation in Breast Cancer.Mol Cancer Ther. 2015 Jun;14(6):1454-65. doi: 10.1158/1535-7163.MCT-14-1053. Epub 2015 Apr 2.
10 PDZK1-interacting protein 1 (PDZK1IP1) traps Smad4 protein and suppresses transforming growth factor- (TGF-) signaling.J Biol Chem. 2019 Mar 29;294(13):4966-4980. doi: 10.1074/jbc.RA118.004153. Epub 2019 Feb 4.
11 MAP17 overexpression is a common characteristic of carcinomas.Carcinogenesis. 2007 Aug;28(8):1646-52. doi: 10.1093/carcin/bgm083. Epub 2007 Apr 9.
12 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
13 The cargo protein MAP17 (PDZK1IP1) regulates the immune microenvironment.Oncotarget. 2017 Oct 6;8(58):98580-98597. doi: 10.18632/oncotarget.21651. eCollection 2017 Nov 17.
14 MAP17 (PDZK1IP1) and pH2AX are potential predictive biomarkers for rectal cancer treatment efficacy.Oncotarget. 2018 Aug 31;9(68):32958-32971. doi: 10.18632/oncotarget.26010. eCollection 2018 Aug 31.
15 Identification of a novel gene, selectively up-regulated in human carcinomas, using the differential display technique.Clin Cancer Res. 1995 Oct;1(10):1209-15.
16 Elevation of MAP17 enhances the malignant behavior of cells via the Akt/mTOR pathway in hepatocellular carcinoma.Oncotarget. 2017 Oct 4;8(54):92589-92603. doi: 10.18632/oncotarget.21506. eCollection 2017 Nov 3.
17 DNA methylation signatures identify biologically distinct thyroid cancer subtypes.J Clin Endocrinol Metab. 2013 Jul;98(7):2811-21. doi: 10.1210/jc.2012-3566. Epub 2013 May 10.
18 Identification of targets of Twist1 transcription factor in thyroid cancer cells.J Clin Endocrinol Metab. 2014 Sep;99(9):E1617-26. doi: 10.1210/jc.2013-3799. Epub 2014 May 21.
19 Detection of Streptococcus mutans by PCR amplification of the spaP gene in teeth rendered caries free.J Dent. 1998 Jul-Aug;26(5-6):443-5. doi: 10.1016/s0300-5712(97)00058-4.
20 Transcriptome sequencing of malignant pleural mesothelioma tumors.Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3521-6. doi: 10.1073/pnas.0712399105. Epub 2008 Feb 26.
21 Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes.Hum Mol Genet. 2001 Mar 1;10(5):445-56. doi: 10.1093/hmg/10.5.445.
22 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
23 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
24 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
27 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
28 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
29 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
30 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
31 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
32 Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1. J Surg Res. 2007 Apr;138(2):163-9. doi: 10.1016/j.jss.2006.05.037. Epub 2007 Jan 25.
33 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
34 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
35 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
36 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.