General Information of Drug Combination (ID: DCOAHLU)

Drug Combination Name
Dorsomorphin CUDC-101
Indication
Disease Entry Status REF
Primitive neuroectodermal tumor Investigative [1]
Component Drugs Dorsomorphin   DMKYXJW CUDC-101   DM9ZOMD
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: TC-32
Zero Interaction Potency (ZIP) Score: 0.68
Bliss Independence Score: 8.58
Loewe Additivity Score: 2.84
LHighest Single Agent (HSA) Score: 3.86

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Dorsomorphin
Disease Entry ICD 11 Status REF
Discovery agent N.A. Investigative [2]
Dorsomorphin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
AMP-activated protein kinase (AMPK) TTLAFZV AAPK1_HUMAN; AAKB1_HUMAN; AAKG1_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
Dorsomorphin Interacts with 39 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cyclic AMP-responsive element-binding protein 1 (CREB1) OT1MDLA1 CREB1_HUMAN Increases Phosphorylation [6]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Increases Phosphorylation [6]
Forkhead box protein O1 (FOXO1) OTPJRB6D FOXO1_HUMAN Decreases Expression [7]
Bone morphogenetic protein receptor type-1B (BMPR1B) OTGFN0OD BMR1B_HUMAN Increases Expression [8]
Ubiquitin-like modifier-activating enzyme ATG7 (ATG7) OTVT4YA1 ATG7_HUMAN Increases Expression [9]
Serine/threonine-protein kinase Chk2 (CHEK2) OT8ZPCNS CHK2_HUMAN Increases Phosphorylation [10]
Transferrin receptor protein 1 (TFRC) OT8ZPBDL TFR1_HUMAN Decreases Expression [8]
Eukaryotic translation initiation factor 2 subunit 1 (EIF2S1) OTM0GDTP IF2A_HUMAN Increases Phosphorylation [11]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [10]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [9]
G2/mitotic-specific cyclin-B1 (CCNB1) OT19S7E5 CCNB1_HUMAN Decreases Expression [10]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [10]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [9]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [9]
Bone morphogenetic protein receptor type-1A (BMPR1A) OTQOA4ZH BMR1A_HUMAN Decreases Expression [8]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [10]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Increases Phosphorylation [9]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [10]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [9]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Increases Phosphorylation [9]
Hepcidin (HAMP) OT607RBL HEPC_HUMAN Decreases Expression [8]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [10]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [9]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [9]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Decreases Expression [12]
5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1) OT7TNF0L AAPK1_HUMAN Decreases Expression [9]
Serine-protein kinase ATM (ATM) OTQVOHLT ATM_HUMAN Increases Phosphorylation [10]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [9]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Decreases Expression [13]
Endoplasmic reticulum membrane sensor NFE2L1 (NFE2L1) OT1QHOS2 NF2L1_HUMAN Decreases Expression [12]
Methylcytosine dioxygenase TET2 (TET2) OTKKT03T TET2_HUMAN Decreases Expression [9]
Hemojuvelin (HJV) OT4235J2 RGMC_HUMAN Decreases Expression [8]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [14]
Forkhead box protein P3 (FOXP3) OTA9Z9OC FOXP3_HUMAN Decreases Expression [9]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Decreases Lipidation [13]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [15]
Transferrin receptor protein 2 (TFR2) OTMYCCEO TFR2_HUMAN Decreases Expression [8]
Krueppel-like factor 2 (KLF2) OTIP1UFX KLF2_HUMAN Decreases Expression [16]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Response To Substance [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 39 DOT(s)
Indication(s) of CUDC-101
Disease Entry ICD 11 Status REF
Solid tumour/cancer 2A00-2F9Z Phase 1 [3]
CUDC-101 Interacts with 2 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Erbb2 tyrosine kinase receptor (HER2) TT6EO5L ERBB2_HUMAN Modulator [3]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Modulator [3]
------------------------------------------------------------------------------------

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Diffuse intrinsic pontine glioma DCY6SUZ SU-DIPG-XIII Investigative [1]
------------------------------------------------------------------------------------

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4907).
3 A Phase I Study of CUDC-101, a Multitarget Inhibitor of HDACs, EGFR, and HER2, in Combination with Chemoradiation in Patients with Head and Neck Squamous Cell Carcinoma. Clin Cancer Res. 2015 Apr 1;21(7):1566-73.
4 Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation. Autophagy. 2016 Nov;12(11):2085-2097. doi: 10.1080/15548627.2016.1226733. Epub 2016 Sep 14.
5 The rational design of a novel potent analogue of the 5'-AMP-activated protein kinase inhibitor compound C with improved selectivity and cellular a... Bioorg Med Chem Lett. 2010 Nov 15;20(22):6394-9.
6 Reversal of P-glycoprotein-mediated multidrug resistance is induced by mollugin in MCF-7/adriamycin cells. Phytomedicine. 2013 May 15;20(7):622-31.
7 AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J. 2014 Oct;281(19):4421-38.
8 A HAMP promoter bioassay system for identifying chemical compounds that modulate hepcidin expression. Exp Hematol. 2015 May;43(5):404-413.e5. doi: 10.1016/j.exphem.2015.01.005. Epub 2015 Jan 26.
9 Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis. Cell Biol Toxicol. 2020 Aug;36(4):315-331. doi: 10.1007/s10565-019-09495-3. Epub 2020 Jan 3.
10 p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells. Toxicol Appl Pharmacol. 2013 Feb 15;267(1):113-24. doi: 10.1016/j.taap.2012.12.016. Epub 2012 Dec 27.
11 Acute exposure to resveratrol inhibits AMPK activity in human skeletal muscle cells. Diabetologia. 2012 Nov;55(11):3051-60. doi: 10.1007/s00125-012-2691-1. Epub 2012 Aug 17.
12 Metformin leads to accumulation of reactive oxygen species by inhibiting the NFE2L1 expression in human hepatocellular carcinoma cells. Toxicol Appl Pharmacol. 2021 Jun 1;420:115523. doi: 10.1016/j.taap.2021.115523. Epub 2021 Apr 8.
13 -amanitin induces autophagy through AMPK-mTOR-ULK1 signaling pathway in hepatocytes. Toxicol Lett. 2023 Jul 1;383:89-97. doi: 10.1016/j.toxlet.2023.06.004. Epub 2023 Jun 16.
14 Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol Nutr Food Res. 2015 Aug;59(8):1443-57. doi: 10.1002/mnfr.201500016. Epub 2015 May 28.
15 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
16 Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res. 2010 Feb 1;85(3):514-9. doi: 10.1093/cvr/cvp337. Epub 2009 Oct 8.