General Information of Drug Off-Target (DOT) (ID: OT7TNF0L)

DOT Name 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1)
Synonyms AMPK subunit alpha-1; EC 2.7.11.1; Acetyl-CoA carboxylase kinase; ACACA kinase; Hydroxymethylglutaryl-CoA reductase kinase; HMGCR kinase; EC 2.7.11.31; Tau-protein kinase PRKAA1; EC 2.7.11.26
Gene Name PRKAA1
Related Disease
Glioblastoma multiforme ( )
Alzheimer disease ( )
Aplasia cutis congenita ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Cardiac failure ( )
Cholestasis ( )
Colon cancer ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Corpus callosum, agenesis of ( )
Epithelial ovarian cancer ( )
Gastric neoplasm ( )
Glioma ( )
Hepatocellular carcinoma ( )
Hereditary diffuse gastric adenocarcinoma ( )
High blood pressure ( )
Hyperglycemia ( )
Hyperlipidemia ( )
Liver cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Metabolic disorder ( )
Non-alcoholic fatty liver disease ( )
Non-small-cell lung cancer ( )
Osteoarthritis ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Pulmonary fibrosis ( )
Schizophrenia ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Acute myelogenous leukaemia ( )
Diabetic kidney disease ( )
Adult glioblastoma ( )
Clear cell renal carcinoma ( )
Colon carcinoma ( )
Non-insulin dependent diabetes ( )
Precancerous condition ( )
Renal cell carcinoma ( )
Triple negative breast cancer ( )
UniProt ID
AAPK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4RED; 4RER; 4REW; 5EZV; 6C9F; 6C9G; 6C9H; 6C9J; 7JHG; 7JHH; 7JIJ; 7M74
EC Number
2.7.11.1; 2.7.11.26; 2.7.11.31
Pfam ID
PF16579 ; PF21147 ; PF00069
Sequence
MRRLSSWRKMATAEKQKHDGRVKIGHYILGDTLGVGTFGKVKVGKHELTGHKVAVKILNR
QKIRSLDVVGKIRREIQNLKLFRHPHIIKLYQVISTPSDIFMVMEYVSGGELFDYICKNG
RLDEKESRRLFQQILSGVDYCHRHMVVHRDLKPENVLLDAHMNAKIADFGLSNMMSDGEF
LRTSCGSPNYAAPEVISGRLYAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICDG
IFYTPQYLNPSVISLLKHMLQVDPMKRATIKDIREHEWFKQDLPKYLFPEDPSYSSTMID
DEALKEVCEKFECSEEEVLSCLYNRNHQDPLAVAYHLIIDNRRIMNEAKDFYLATSPPDS
FLDDHHLTRPHPERVPFLVAETPRARHTLDELNPQKSKHQGVRKAKWHLGIRSQSRPNDI
MAEVCRAIKQLDYEWKVVNPYYLRVRRKNPVTSTYSKMSLQLYQVDSRTYLLDFRSIDDE
ITEAKSGTATPQRSGSVSNYRSCQRSDSDAEAQGKSSEVSLTSSVTSLDSSPVDLTPRPG
SHTIEFFEMCANLIKILAQ
Function
Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively. Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3. AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160. Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A. Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm. In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2. Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation. In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes. In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1. In that process also activates WDR45/WIPI4. Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation. In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it. May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it. Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo. Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1. Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
Autophagy - animal (hsa04140 )
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Apelin sig.ling pathway (hsa04371 )
Tight junction (hsa04530 )
Circadian rhythm (hsa04710 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Oxytocin sig.ling pathway (hsa04921 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Alcoholic liver disease (hsa04936 )
Hypertrophic cardiomyopathy (hsa05410 )
Fluid shear stress and atherosclerosis (hsa05418 )
Reactome Pathway
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Macroautophagy (R-HSA-1632852 )

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Glioblastoma multiforme DISK8246 Definitive Altered Expression [1]
Alzheimer disease DISF8S70 Strong Biomarker [2]
Aplasia cutis congenita DISMDAYM Strong Biomarker [3]
Arteriosclerosis DISK5QGC Strong Genetic Variation [4]
Atherosclerosis DISMN9J3 Strong Genetic Variation [4]
Bladder cancer DISUHNM0 Strong Altered Expression [5]
Breast cancer DIS7DPX1 Strong Altered Expression [6]
Breast carcinoma DIS2UE88 Strong Altered Expression [6]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Biomarker [7]
Cardiac failure DISDC067 Strong Biomarker [8]
Cholestasis DISDJJWE Strong Altered Expression [9]
Colon cancer DISVC52G Strong Altered Expression [10]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [11]
Congestive heart failure DIS32MEA Strong Biomarker [8]
Corpus callosum, agenesis of DISO9P40 Strong Biomarker [3]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [12]
Gastric neoplasm DISOKN4Y Strong Biomarker [13]
Glioma DIS5RPEH Strong Biomarker [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
Hereditary diffuse gastric adenocarcinoma DISUIBYS Strong Biomarker [13]
High blood pressure DISY2OHH Strong Biomarker [16]
Hyperglycemia DIS0BZB5 Strong Biomarker [17]
Hyperlipidemia DIS61J3S Strong Altered Expression [18]
Liver cancer DISDE4BI Strong Biomarker [7]
Lung cancer DISCM4YA Strong Altered Expression [6]
Lung carcinoma DISTR26C Strong Altered Expression [6]
Melanoma DIS1RRCY Strong Biomarker [19]
Metabolic disorder DIS71G5H Strong Biomarker [20]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [21]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [22]
Osteoarthritis DIS05URM Strong Biomarker [23]
Ovarian cancer DISZJHAP Strong Biomarker [12]
Ovarian neoplasm DISEAFTY Strong Biomarker [12]
Prostate cancer DISF190Y Strong Biomarker [24]
Prostate carcinoma DISMJPLE Strong Biomarker [24]
Pulmonary fibrosis DISQKVLA Strong Altered Expression [25]
Schizophrenia DISSRV2N Strong Genetic Variation [26]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [5]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [5]
Acute myelogenous leukaemia DISCSPTN moderate Biomarker [27]
Diabetic kidney disease DISJMWEY Disputed Biomarker [28]
Adult glioblastoma DISVP4LU Limited Altered Expression [1]
Clear cell renal carcinoma DISBXRFJ Limited Biomarker [29]
Colon carcinoma DISJYKUO Limited Altered Expression [10]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [30]
Precancerous condition DISV06FL Limited Biomarker [31]
Renal cell carcinoma DISQZ2X8 Limited Biomarker [29]
Triple negative breast cancer DISAMG6N Limited Altered Expression [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fenofibrate DMFKXDY Approved 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1) decreases the response to substance of Fenofibrate. [61]
Afimoxifene DMFORDT Phase 2 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1) decreases the response to substance of Afimoxifene. [62]
------------------------------------------------------------------------------------
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Hexadecanoic acid DMWUXDZ Investigative 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1) increases the oxidation of Hexadecanoic acid. [63]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [33]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [34]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [35]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [36]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [38]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [40]
Aspirin DM672AH Approved Aspirin increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [43]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [44]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the activity of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [48]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [51]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [56]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [57]
Dorsomorphin DMKYXJW Investigative Dorsomorphin decreases the expression of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [59]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
17 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [39]
Testosterone DM7HUNW Approved Testosterone increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [41]
Phenobarbital DMXZOCG Approved Phenobarbital increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [42]
Capsaicin DMGMF6V Approved Capsaicin increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [45]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [46]
Curcumin DMQPH29 Phase 3 Curcumin increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [47]
Acadesine DM1RMF5 Phase 3 Acadesine increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [42]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [49]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [50]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [52]
Tetrandrine DMAOJBX Phase 1 Tetrandrine affects the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [53]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [54]
Taxifolin DMQJSF9 Preclinical Taxifolin decreases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [55]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [54]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [58]
Ginsenoside Re DM46FVD Investigative Ginsenoside Re increases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [60]
schisandrin A DMWQ480 Investigative schisandrin A decreases the phosphorylation of 5'-AMP-activated protein kinase catalytic subunit alpha-1 (PRKAA1). [55]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 DNA-PKcs is activated under nutrient starvation and activates Akt, MST1, FoxO3a, and NDR1.Biochem Biophys Res Commun. 2020 Jan 15;521(3):668-673. doi: 10.1016/j.bbrc.2019.10.133. Epub 2019 Nov 1.
2 Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients.Metab Brain Dis. 2020 Jan;35(1):201-213. doi: 10.1007/s11011-019-00497-y. Epub 2019 Dec 13.
3 Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome.Free Radic Biol Med. 2019 Apr;134:119-132. doi: 10.1016/j.freeradbiomed.2019.01.011. Epub 2019 Jan 10.
4 AMPK Subunits Harbor Largely Nonoverlapping Genetic Determinants for Body Fat Mass, Glucose Metabolism, and Cholesterol Metabolism.J Clin Endocrinol Metab. 2020 Jan 1;105(1):dgz020. doi: 10.1210/clinem/dgz020.
5 BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells.Cancer Med. 2019 Aug;8(10):4792-4805. doi: 10.1002/cam4.2385. Epub 2019 Jun 28.
6 Ouabain impairs cancer metabolism and activates AMPK-Src signaling pathway in human cancer cell lines.Acta Pharmacol Sin. 2020 Jan;41(1):110-118. doi: 10.1038/s41401-019-0290-0. Epub 2019 Sep 12.
7 LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway.Cancer Cell Int. 2019 Mar 18;19:60. doi: 10.1186/s12935-019-0778-1. eCollection 2019.
8 BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1 signaling in heart failure mice.Arch Med Sci. 2019 Jan;15(1):214-222. doi: 10.5114/aoms.2018.81037. Epub 2018 Dec 30.
9 Role of AMP-activated protein kinase 1 in 17-ethinylestradiol-induced cholestasis in rats.Arch Toxicol. 2017 Jan;91(1):481-494. doi: 10.1007/s00204-016-1697-8. Epub 2016 Apr 18.
10 A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells.Sci Rep. 2018 Feb 28;8(1):3770. doi: 10.1038/s41598-018-22090-6.
11 AMPK1 confers survival advantage of colorectal cancer cells under metabolic stress by promoting redox balance through the regulation of glutathione reductase phosphorylation.Oncogene. 2020 Jan;39(3):637-650. doi: 10.1038/s41388-019-1004-2. Epub 2019 Sep 17.
12 Inhibition of mitochondrial translation as a therapeutic strategy for human ovarian cancer to overcome chemoresistance.Biochem Biophys Res Commun. 2019 Feb 5;509(2):373-378. doi: 10.1016/j.bbrc.2018.12.127. Epub 2018 Dec 25.
13 Loss-of-function variants in ATM confer risk of gastric cancer.Nat Genet. 2015 Aug;47(8):906-10. doi: 10.1038/ng.3342. Epub 2015 Jun 22.
14 Baicalein Induces Autophagy and Apoptosis through AMPK Pathway in Human Glioma Cells.Am J Chin Med. 2019;47(6):1405-1418. doi: 10.1142/S0192415X19500721. Epub 2019 Sep 5.
15 Metabolism-induced tumor activator 1 (MITA1), an Energy Stress-Inducible Long Noncoding RNA, Promotes Hepatocellular Carcinoma Metastasis.Hepatology. 2019 Jul;70(1):215-230. doi: 10.1002/hep.30602. Epub 2019 Apr 26.
16 Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway.Hypertens Res. 2019 Jul;42(7):960-969. doi: 10.1038/s41440-019-0212-z. Epub 2019 Jan 21.
17 Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver.PLoS One. 2019 Feb 27;14(2):e0211568. doi: 10.1371/journal.pone.0211568. eCollection 2019.
18 Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPAR signaling cascade of lipid metabolism.J Nutr Biochem. 2019 Aug;70:174-184. doi: 10.1016/j.jnutbio.2019.05.006. Epub 2019 May 25.
19 Panduratin A induces protective autophagy in melanoma via the AMPK and mTOR pathway.Phytomedicine. 2018 Mar 15;42:144-151. doi: 10.1016/j.phymed.2018.03.027. Epub 2018 Mar 15.
20 Effects of AMPK on Apoptosis and Energy Metabolism of Gastric Smooth Muscle Cells in Rats with Diabetic Gastroparesis.Cell Biochem Biophys. 2019 Jun;77(2):165-177. doi: 10.1007/s12013-019-00870-9. Epub 2019 Apr 9.
21 L-Carnitine counteracts in vitro fructose-induced hepatic steatosis through targeting oxidative stress markers.J Endocrinol Invest. 2020 Apr;43(4):493-503. doi: 10.1007/s40618-019-01134-2. Epub 2019 Nov 8.
22 Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPK signaling in STK11 mutant lung cancer.Autophagy. 2020 Apr;16(4):659-671. doi: 10.1080/15548627.2019.1634945. Epub 2019 Jun 28.
23 15-Lipoxygenase-1 in osteoblasts promotes TGF-1 expression via inhibiting autophagy in human osteoarthritis.Biomed Pharmacother. 2020 Jan;121:109548. doi: 10.1016/j.biopha.2019.109548. Epub 2019 Nov 5.
24 The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer.Gene. 2019 Feb 20;686:220-227. doi: 10.1016/j.gene.2018.11.048. Epub 2018 Nov 16.
25 Wedelolactone Attenuates Pulmonary Fibrosis Partly Through Activating AMPK and Regulating Raf-MAPKs Signaling Pathway.Front Pharmacol. 2019 Mar 5;10:151. doi: 10.3389/fphar.2019.00151. eCollection 2019.
26 Common variants on 8p12 and 1q24.2 confer risk of schizophrenia.Nat Genet. 2011 Oct 30;43(12):1224-7. doi: 10.1038/ng.980.
27 LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4/AMPK/WNT5A signaling pathway.Hematol Oncol. 2019 Oct;37(4):474-482. doi: 10.1002/hon.2651. Epub 2019 Aug 5.
28 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress.Toxicol Appl Pharmacol. 2019 May 1;370:93-105. doi: 10.1016/j.taap.2019.03.007. Epub 2019 Mar 12.
29 Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2.Int J Biol Sci. 2019 Jan 1;15(3):617-627. doi: 10.7150/ijbs.29689. eCollection 2019.
30 Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.J Ethnopharmacol. 2020 Feb 10;248:112326. doi: 10.1016/j.jep.2019.112326. Epub 2019 Oct 19.
31 Environmental factors, seven GWAS-identified susceptibility loci, and risk of gastric cancer and its precursors in a Chinese population.Cancer Med. 2017 Mar;6(3):708-720. doi: 10.1002/cam4.1038. Epub 2017 Feb 21.
32 AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer.Breast Cancer Res. 2019 Feb 21;21(1):29. doi: 10.1186/s13058-019-1107-2.
33 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
34 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
35 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
36 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
37 Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol. 2013 May;169(1):167-78.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway. Cancer Lett. 2010 Jun 28;292(2):228-36. doi: 10.1016/j.canlet.2009.12.005. Epub 2010 Jan 18.
40 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
41 Testosterone or 17{beta}-estradiol exposure reveals sex-specific effects on glucose and lipid metabolism in human myotubes. J Endocrinol. 2011 Aug;210(2):219-29. doi: 10.1530/JOE-10-0497. Epub 2011 Jun 1.
42 MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor. PLoS One. 2012;7(7):e41291. doi: 10.1371/journal.pone.0041291. Epub 2012 Jul 18.
43 Aspirin regulates hepatocellular lipid metabolism by activating AMPK signaling pathway. J Toxicol Sci. 2015 Feb;40(1):127-36. doi: 10.2131/jts.40.127.
44 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
45 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
46 AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem. 2010 Mar 19;285(12):9100-13. doi: 10.1074/jbc.M109.060061. Epub 2010 Jan 14.
47 Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther. 2008 Sep;7(9):2609-20. doi: 10.1158/1535-7163.MCT-07-2400.
48 Atorvastatin and pravastatin stimulate nitric oxide and reactive oxygen species generation, affect mitochondrial network architecture and elevate nicotinamide N-methyltransferase level in endothelial cells. J Appl Toxicol. 2021 Jul;41(7):1076-1088. doi: 10.1002/jat.4094. Epub 2020 Oct 19.
49 Activation of autophagy rescues amiodarone-induced apoptosis of lung epithelial cells and pulmonary toxicity in rats. Toxicol Sci. 2013 Nov;136(1):193-204. doi: 10.1093/toxsci/kft168. Epub 2013 Aug 2.
50 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
51 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
52 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
53 Antitumor activity of arsenite in combination with tetrandrine against human breast cancer cell line MDA-MB-231 in vitro and in vivo. Cancer Cell Int. 2018 Aug 13;18:113. doi: 10.1186/s12935-018-0613-0. eCollection 2018.
54 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
55 Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One. 2013 May 14;8(5):e63354. doi: 10.1371/journal.pone.0063354. Print 2013.
56 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
57 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
58 ERK5/HDAC5-mediated, resveratrol-, and pterostilbene-induced expression of MnSOD in human endothelial cells. Mol Nutr Food Res. 2016 Feb;60(2):266-77. doi: 10.1002/mnfr.201500466. Epub 2015 Oct 23.
59 Compound C induces autophagy and apoptosis in parental and hydroquinone-selected malignant leukemia cells through the ROS/p38 MAPK/AMPK/TET2/FOXP3 axis. Cell Biol Toxicol. 2020 Aug;36(4):315-331. doi: 10.1007/s10565-019-09495-3. Epub 2020 Jan 3.
60 Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med. 2012 Jan;29(1):73-80. doi: 10.3892/ijmm.2011.805. Epub 2011 Oct 3.
61 AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-B pathway. Environ Toxicol. 2016 Jul;31(7):866-76. doi: 10.1002/tox.22097. Epub 2014 Dec 24.
62 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
63 Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells. J Biol Chem. 2019 Jun 14;294(24):9342-9357.