General Information of Drug Off-Target (DOT) (ID: OT3L9XO3)

DOT Name Long-chain-fatty-acid--CoA ligase 5 (ACSL5)
Synonyms EC 6.2.1.3; Arachidonate--CoA ligase; EC 6.2.1.15; Long-chain acyl-CoA synthetase 5; LACS 5
Gene Name ACSL5
Related Disease
Advanced cancer ( )
Epithelial neoplasm ( )
Adenocarcinoma ( )
Astrocytoma ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma ( )
Coeliac disease ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Fatty liver disease ( )
Glioblastoma multiforme ( )
Glioma ( )
Hyperlipidemia ( )
Neoplasm ( )
Obesity ( )
Systemic lupus erythematosus ( )
Acute coronary syndrome ( )
Acute erythroid leukemia ( )
Acute myelogenous leukaemia ( )
Childhood myelodysplastic syndrome ( )
Diarrhea 13 ( )
Lung cancer ( )
Migraine disorder ( )
Myelodysplastic syndrome ( )
Myocardial infarction ( )
UniProt ID
ACSL5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
6.2.1.15; 6.2.1.3
Pfam ID
PF00501
Sequence
MLFIFNFLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVS
QKNNDLTSCCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGS
CLLHKGYKSSPDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADI
AMVICDTPQKALVLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLG
KEHFRKPVPPSPEDLSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDV
AISYLPLAHMFERIVQAVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYD
KVQNEAKTPLKKFLLKLAVSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGA
APMSTSVMTFFRAAMGCQVYEAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVA
DMNYFTVNNEGEVCIKGTNVFKGYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDR
KKNIFKLAQGEYIAPEKIENIYNRSQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKL
GVKGSFEELCQNQVVREAILEDLQKIGKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLK
AKRGELSKYFRTQIDSLYEHIQD
Function
Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage. Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids. It was suggested that it may also stimulate fatty acid oxidation. At the villus tip of the crypt-villus axis of the small intestine may sensitize epithelial cells to apoptosis specifically triggered by the death ligand TRAIL. May have a role in the survival of glioma cells.
KEGG Pathway
Fatty acid biosynthesis (hsa00061 )
Fatty acid degradation (hsa00071 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
PPAR sig.ling pathway (hsa03320 )
Peroxisome (hsa04146 )
Ferroptosis (hsa04216 )
Thermogenesis (hsa04714 )
Adipocytokine sig.ling pathway (hsa04920 )
Reactome Pathway
Synthesis of very long-chain fatty acyl-CoAs (R-HSA-75876 )
BioCyc Pathway
MetaCyc:HS01349-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Altered Expression [1]
Epithelial neoplasm DIS0T594 Definitive Altered Expression [2]
Adenocarcinoma DIS3IHTY Strong Altered Expression [3]
Astrocytoma DISL3V18 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Carcinoma DISH9F1N Strong Biomarker [6]
Coeliac disease DISIY60C Strong Biomarker [7]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [8]
Congestive heart failure DIS32MEA Strong Genetic Variation [9]
Fatty liver disease DIS485QZ Strong Altered Expression [10]
Glioblastoma multiforme DISK8246 Strong Biomarker [11]
Glioma DIS5RPEH Strong Biomarker [1]
Hyperlipidemia DIS61J3S Strong Altered Expression [12]
Neoplasm DISZKGEW Strong Biomarker [13]
Obesity DIS47Y1K Strong Genetic Variation [14]
Systemic lupus erythematosus DISI1SZ7 Strong Biomarker [15]
Acute coronary syndrome DIS7DYEW Limited Biomarker [16]
Acute erythroid leukemia DISZFC1O Limited Genetic Variation [17]
Acute myelogenous leukaemia DISCSPTN Limited Biomarker [17]
Childhood myelodysplastic syndrome DISMN80I Limited Genetic Variation [17]
Diarrhea 13 DIST251K Limited Unknown [18]
Lung cancer DISCM4YA Limited Altered Expression [19]
Migraine disorder DISFCQTG Limited Genetic Variation [20]
Myelodysplastic syndrome DISYHNUI Limited Genetic Variation [17]
Myocardial infarction DIS655KI Limited Genetic Variation [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [21]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [22]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [23]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [25]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [22]
Quercetin DM3NC4M Approved Quercetin increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [26]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [27]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [28]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [29]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [30]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [31]
Tolcapone DM8MNVO Approved Tolcapone decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [32]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [33]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [34]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [35]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [37]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [38]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Long-chain-fatty-acid--CoA ligase 5 (ACSL5). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions.Oncogene. 2009 Jan 8;28(1):9-19. doi: 10.1038/onc.2008.355. Epub 2008 Sep 22.
2 Impaired expression of acyl-CoA-synthetase 5 in epithelial tumors of the small intestine.Hum Pathol. 2003 Oct;34(10):1048-52. doi: 10.1053/s0046-8177(03)00431-3.
3 Low acyl-CoA synthetase 5 expression in colorectal carcinomas is prognostic for early tumour recurrence.Pathol Res Pract. 2017 Mar;213(3):261-266. doi: 10.1016/j.prp.2016.09.002. Epub 2016 Sep 26.
4 Splice-site variant in ACSL5: a marker promoting opposing effect on cell viability and protein expression.Eur J Hum Genet. 2019 Dec;27(12):1836-1844. doi: 10.1038/s41431-019-0414-5. Epub 2019 May 3.
5 Association of long-chain acyl-coenzyme A synthetase5 expression in human breast cancer by estrogen receptor status and its clinical significance.Oncol Rep. 2017 Jun;37(6):3253-3260. doi: 10.3892/or.2017.5610. Epub 2017 Apr 28.
6 Levels of acyl-coenzyme A synthetase 5 in urothelial cells and corresponding neoplasias reflect cellular differentiation.Histol Histopathol. 2013 Mar;28(3):353-64. doi: 10.14670/HH-28.353.
7 Coeliac disease is associated with impaired expression of acyl-CoA-synthetase 5.Int J Colorectal Dis. 2006 Mar;21(2):130-4. doi: 10.1007/s00384-004-0738-6. Epub 2005 Apr 5.
8 Acyl-CoA Synthetase 5 Promotes the Growth and Invasion of Colorectal Cancer Cells.Can J Gastroenterol Hepatol. 2017;2017:7615736. doi: 10.1155/2017/7615736. Epub 2017 Jul 20.
9 Usefulness of Rivaroxaban for Secondary Prevention of Acute Coronary Syndrome in Patients With History of Congestive Heart Failure (from the ATLAS-ACS-2 TIMI-51 Trial).Am J Cardiol. 2018 Dec 1;122(11):1896-1901. doi: 10.1016/j.amjcard.2018.08.034. Epub 2018 Sep 7.
10 Lipid-induced up-regulation of human acyl-CoA synthetase 5 promotes hepatocellular apoptosis.Biochim Biophys Acta. 2010 Sep;1801(9):1025-35. doi: 10.1016/j.bbalip.2010.04.010. Epub 2010 May 12.
11 Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas.Oncogene. 2000 Nov 30;19(51):5919-25. doi: 10.1038/sj.onc.1203981.
12 Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced beta-oxidation.Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2198-205. doi: 10.1161/ATVBAHA.107.148429. Epub 2007 Aug 30.
13 Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion.Oncotarget. 2017 Feb 28;8(9):15014-15022. doi: 10.18632/oncotarget.14788.
14 Acyl-CoA synthetase long-chain 5 genotype is associated with body composition changes in response to lifestyle interventions in postmenopausal women with overweight and obesity: a genetic association study on cohorts Montral-Ottawa New Emerging Team, and Complications Associated with Obesity.BMC Med Genet. 2016 Aug 11;17(1):56. doi: 10.1186/s12881-016-0320-4.
15 High ACSL5 transcript levels associate with systemic lupus erythematosus and apoptosis in Jurkat T lymphocytes and peripheral blood cells.PLoS One. 2011;6(12):e28591. doi: 10.1371/journal.pone.0028591. Epub 2011 Dec 6.
16 Rivaroxaban: A New Treatment Paradigm in the Setting of Vascular Protection?.Thromb Haemost. 2018 May;118(S 01):S12-S22. doi: 10.1055/s-0038-1636530. Epub 2018 Mar 22.
17 Fusion of TEL/ETV6 to a novel ACS2 in myelodysplastic syndrome and acute myelogenous leukemia with t(5;12)(q31;p13).Genes Chromosomes Cancer. 1999 Nov;26(3):192-202. doi: 10.1002/(sici)1098-2264(199911)26:3<192::aid-gcc2>3.0.co;2-e.
18 Deficiency of acyl-CoA synthetase 5 is associated with a severe and treatable failure to thrive of neonatal onset. Clin Genet. 2021 Mar;99(3):376-383. doi: 10.1111/cge.13883. Epub 2020 Nov 25.
19 Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.PLoS One. 2016 May 12;11(5):e0155660. doi: 10.1371/journal.pone.0155660. eCollection 2016.
20 A splice variant in the ACSL5 gene relates migraine with fatty acid activation in mitochondria.Eur J Hum Genet. 2016 Nov;24(11):1572-1577. doi: 10.1038/ejhg.2016.54. Epub 2016 May 18.
21 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
22 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
23 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
24 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
27 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
28 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
29 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
30 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
31 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
32 Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells. Toxicol Sci. 2018 Aug 1;164(2):477-488.
33 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
34 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
35 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
36 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
37 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
38 Roles of acyl-CoA synthetase long-chain family member 5 and colony stimulating factor 2 in inhibition of palmitic or stearic acids in lung cancer cell proliferation and metabolism. Cell Biol Toxicol. 2021 Feb;37(1):15-34. doi: 10.1007/s10565-020-09520-w. Epub 2020 Apr 28.
39 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.