General Information of Drug Off-Target (DOT) (ID: OT9PD6CS)

DOT Name Rho GDP-dissociation inhibitor 2 (ARHGDIB)
Synonyms Rho GDI 2; Ly-GDI; Rho-GDI beta
Gene Name ARHGDIB
Related Disease
Gastric neoplasm ( )
Melanoma ( )
Adenocarcinoma ( )
Adenoma ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma ( )
Classic Hodgkin lymphoma ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Hepatocellular carcinoma ( )
HIV infectious disease ( )
Lung neoplasm ( )
Neoplasm ( )
Pancreatic cancer ( )
Pancreatic tumour ( )
Renal cell carcinoma ( )
Severe congenital neutropenia ( )
Stomach cancer ( )
Systemic lupus erythematosus ( )
Lung cancer ( )
Lung carcinoma ( )
Acute coronary syndrome ( )
UniProt ID
GDIR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1DS6; 5H1D
Pfam ID
PF02115
Sequence
MTEKAPEPHVEEDDDDELDSKLNYKPPPQKSLKELQEMDKDDESLIKYKKTLLGDGPVVT
DPKAPNVVVTRLTLVCESAPGPITMDLTGDLEALKKETIVLKEGSEYRVKIHFKVNRDIV
SGLKYVQHTYRTGVKVDKATFMVGSYGPRPEEYEFLTPVEEAPKGMLARGTYHNKSFFTD
DDKQDHLSWEWNLSIKKEWTE
Function
Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Regulates reorganization of the actin cytoskeleton mediated by Rho family members.
Tissue Specificity Detected in bone marrow, thymus and spleen.
KEGG Pathway
Neurotrophin sig.ling pathway (hsa04722 )
Vasopressin-regulated water reabsorption (hsa04962 )
Reactome Pathway
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RHOH GTPase cycle (R-HSA-9013407 )
RHOG GTPase cycle (R-HSA-9013408 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

25 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Gastric neoplasm DISOKN4Y Definitive Biomarker [1]
Melanoma DIS1RRCY Definitive Altered Expression [2]
Adenocarcinoma DIS3IHTY Strong Altered Expression [3]
Adenoma DIS78ZEV Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Altered Expression [5]
Breast carcinoma DIS2UE88 Strong Altered Expression [5]
Carcinoma DISH9F1N Strong Altered Expression [3]
Classic Hodgkin lymphoma DISV1LU6 Strong Altered Expression [6]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [7]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [8]
Gastric cancer DISXGOUK Strong Biomarker [9]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
HIV infectious disease DISO97HC Strong Biomarker [11]
Lung neoplasm DISVARNB Strong Biomarker [12]
Neoplasm DISZKGEW Strong Biomarker [10]
Pancreatic cancer DISJC981 Strong Biomarker [4]
Pancreatic tumour DIS3U0LK Strong Biomarker [4]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [7]
Severe congenital neutropenia DISES99N Strong Posttranslational Modification [13]
Stomach cancer DISKIJSX Strong Biomarker [9]
Systemic lupus erythematosus DISI1SZ7 Strong Biomarker [14]
Lung cancer DISCM4YA moderate Biomarker [15]
Lung carcinoma DISTR26C moderate Biomarker [15]
Acute coronary syndrome DIS7DYEW Limited Biomarker [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
31 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [17]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [18]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [19]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [20]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [21]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [22]
Quercetin DM3NC4M Approved Quercetin increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [24]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [25]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [26]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [27]
Triclosan DMZUR4N Approved Triclosan increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [28]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [29]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [30]
Fluorouracil DMUM7HZ Approved Fluorouracil affects the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [31]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [32]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [33]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [34]
Etoposide DMNH3PG Approved Etoposide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [35]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [36]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [35]
Diphenylpyraline DMW4X37 Approved Diphenylpyraline decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [37]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [35]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [38]
PEITC DMOMN31 Phase 2 PEITC decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [39]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [41]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [42]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [43]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [44]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [45]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [46]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [23]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [40]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Myricetin DMTV4L0 Investigative Myricetin increases the cleavage of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [48]
PGJ2 DMR2LTC Investigative PGJ2 increases the cleavage of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [49]
PGD2 DMYDW6J Investigative PGD2 increases the cleavage of Rho GDP-dissociation inhibitor 2 (ARHGDIB). [49]
------------------------------------------------------------------------------------

References

1 RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer.Clin Cancer Res. 2009 Apr 15;15(8):2612-9. doi: 10.1158/1078-0432.CCR-08-2192. Epub 2009 Apr 7.
2 Unconventional myosin VIIA promotes melanoma progression.J Cell Sci. 2018 Feb 22;131(4):jcs209924. doi: 10.1242/jcs.209924.
3 Changes in gene expression during progression of ovarian carcinoma.Cancer Genet Cytogenet. 2001 Jul 1;128(1):1-6. doi: 10.1016/s0165-4608(01)00386-7.
4 Depletion of RhoGDI2 expression inhibits the ability of invasion and migration in pancreatic carcinoma.Int J Mol Med. 2014 Jul;34(1):205-12. doi: 10.3892/ijmm.2014.1765. Epub 2014 Apr 30.
5 Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.OMICS. 2014 Dec;18(12):778-91. doi: 10.1089/omi.2014.0075.
6 Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma.Br J Haematol. 2007 Oct;139(2):217-23. doi: 10.1111/j.1365-2141.2007.06782.x.
7 Rho GDP dissociation inhibitor- in renal cell carcinoma.Oncol Lett. 2017 Dec;14(6):8190-8196. doi: 10.3892/ol.2017.7233. Epub 2017 Oct 20.
8 Clinical significance of Rho GDP dissociation inhibitor 2 in colorectal carcinoma.Int J Clin Oncol. 2012 Apr;17(2):137-42. doi: 10.1007/s10147-011-0270-y. Epub 2011 Jun 24.
9 RhoGDI2 promotes epithelial-mesenchymal transition via induction of Snail in gastric cancer cells.Oncotarget. 2014 Mar 30;5(6):1554-64. doi: 10.18632/oncotarget.1733.
10 Prognostic value of Rho GDP dissociation inhibitors in patients with hepatocellular carcinoma following liver transplantation.Oncol Lett. 2017 Aug;14(2):1395-1402. doi: 10.3892/ol.2017.6333. Epub 2017 Jun 7.
11 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
12 Expression profile of RhoGDI2 in lung cancers and role of RhoGDI2 in lung cancer metastasis.Oncol Rep. 2010 Aug;24(2):465-71. doi: 10.3892/or_00000880.
13 Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia.Blood. 2000 May 1;95(9):2947-53.
14 Anti-D4GDI antibodies activate platelets in vitro: a possible link with thrombocytopenia in primary antiphospholipid syndrome.Arthritis Res Ther. 2019 Jul 1;21(1):161. doi: 10.1186/s13075-019-1947-2.
15 Novel candidate key drivers in the integrative network of genes, microRNAs, methylations, and copy number variations in squamous cell lung carcinoma.Biomed Res Int. 2015;2015:358125. doi: 10.1155/2015/358125. Epub 2015 Feb 23.
16 Proteomic changes related to "bewildered" circulating platelets in the acute coronary syndrome.Proteomics. 2011 Aug;11(16):3335-48. doi: 10.1002/pmic.201000708. Epub 2011 Jul 14.
17 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
18 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
19 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
20 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
21 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
22 Research resource: STR DNA profile and gene expression comparisons of human BG-1 cells and a BG-1/MCF-7 clonal variant. Mol Endocrinol. 2014 Dec;28(12):2072-81.
23 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
24 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
25 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
26 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
27 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
28 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
29 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
30 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
31 New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol. 2021 Aug;95(8):2691-2718. doi: 10.1007/s00204-021-03092-2. Epub 2021 Jun 20.
32 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
33 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
34 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
35 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
36 Prediction of the contact sensitizing potential of chemicals using analysis of gene expression changes in human THP-1 monocytes. Toxicol Lett. 2010 Nov 10;199(1):51-9.
37 Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J Allergy Clin Immunol. 2016 Dec;138(6):1690-1700. doi: 10.1016/j.jaci.2016.02.038. Epub 2016 Apr 24.
38 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
39 Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017 Jan;32(1):176-187.
40 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
41 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
42 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
43 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
44 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
45 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
46 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
47 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.
48 Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol. 2005 Mar 15;69(6):913-27. doi: 10.1016/j.bcp.2004.12.005.
49 Prostaglandin D(2) and J(2) induce apoptosis in human leukemia cells via activation of the caspase 3 cascade and production of reactive oxygen species. Biochim Biophys Acta. 2005 Apr 15;1743(3):291-304.