General Information of Drug Off-Target (DOT) (ID: OTHJQ1DZ)

DOT Name DNA-directed RNA polymerase II subunit RPB1 (POLR2A)
Synonyms
RNA polymerase II subunit B1; EC 2.7.7.6; 3'-5' exoribonuclease; EC 3.1.13.-; DNA-directed RNA polymerase II subunit A; DNA-directed RNA polymerase III largest subunit; RNA-directed RNA polymerase II subunit RPB1; EC 2.7.7.48
Gene Name POLR2A
Related Disease
Autism, susceptibility to, 15 ( )
Melanoma ( )
Meningioma ( )
Acute myelogenous leukaemia ( )
Cardiac failure ( )
Cardiomyopathy ( )
Central nervous system neoplasm ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Glioma ( )
Neurodevelopmental disorder with hypotonia and variable intellectual and behavioral abnormalities ( )
Onychomycosis ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Schizophrenia ( )
Stomach cancer ( )
Advanced cancer ( )
Influenza ( )
Neoplasm ( )
Triple negative breast cancer ( )
Non-small-cell lung cancer ( )
Castration-resistant prostate carcinoma ( )
Clear cell renal carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
UniProt ID
RPB1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2GHQ ; 2GHT ; 2LTO ; 3D9K ; 3D9L ; 3D9M ; 3D9N ; 3D9O ; 3D9P ; 4JXT ; 5IY6 ; 5IY7 ; 5IY8 ; 5IY9 ; 5IYA ; 5IYB ; 5IYC ; 5IYD ; 5M3H ; 5M3J ; 6DRD ; 6F5P ; 6G0R ; 6IC8 ; 6IC9 ; 6O9L ; 6Q5Y ; 6XKB ; 6XRE ; 7EGB ; 7EGC ; 7LBM ; 7YCX ; 7Z1K ; 7Z42
EC Number
2.7.7.48; 2.7.7.6; 3.1.13.-
Pfam ID
PF04997 ; PF00623 ; PF04983 ; PF05000 ; PF04998 ; PF04992 ; PF04990 ; PF05001
Sequence
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDP
RQGVIERTGRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVD
SNNPKIKDILAKSKGQPKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKG
HGGCGRYQPRIRRSGLELYAEWKHVNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEP
RYARPEWMIVTVLPVPPLSVRPAVVMQGSARNQDDLTHKLADIVKINNQLRRNEQNGAAA
HVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLKQRLKGKEGRVRGNLMGKRVD
FSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRRGNSQYPGAKYII
RDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRILPWS
TFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQD
TLTAVRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHI
NCIRTHSTHPDDEDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEM
GHDITRLFYSNIQTVINNWLLIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKA
HNNELEPTPGNTLRQTFENQVNRILNDARDKTGSSAQKSLSEYNNFKSMVVSGAKGSKIN
ISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYGPESRGFVENSYLAGLTPTEFFFHA
MGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSINQVVQLRYGEDGLAGES
VEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNELEREFERMR
EDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAI
AHPGEMVGALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLT
VFLLGQSARDAERAKDILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMP
DFDVARISPWLLRVELDRKHMTDRKLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIR
IMNSDENKMQEEEEVVDKMDDDVFLRCIESNMLTDMTLQGIEQISKVYMHLPQTDNKKKI
IITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSNDIVEIFTVLGIEAVRKALER
ELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLMKCSFEETVDVLM
EAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAAGPTG
MFFGSAPSPMGGISPAMTPWNQGATPAYGAWSPSVGSGMTPGAAGFSPSAASDASGFSPG
YSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPSYSPTSPAYEPRSPGGYTPQSPSYSPTSP
SYSPTSPSYSPTSPNYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSP
TSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPS
YSPTSPNYSPTSPNYTPTSPSYSPTSPSYSPTSPNYTPTSPNYSPTSPSYSPTSPSYSPT
SPSYSPSSPRYTPQSPTYTPSSPSYSPSSPSYSPASPKYTPTSPSYSPSSPEYTPTSPKY
SPTSPKYSPTSPKYSPTSPTYSPTTPKYSPTSPTYSPTSPVYTPTSPKYSPTSPTYSPTS
PKYSPTSPTYSPTSPKGSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN
Function
Catalytic core component of RNA polymerase II (Pol II), a DNA-dependent RNA polymerase which synthesizes mRNA precursors and many functional non-coding RNAs using the four ribonucleoside triphosphates as substrates. Pol II-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol II pre-initiation complex (PIC) is recruited to DNA promoters, with focused-type promoters containing either the initiator (Inr) element, or the TATA-box found in cell-type specific genes and dispersed-type promoters that often contain hypomethylated CpG islands usually found in housekeeping genes. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA. Forms Pol II active center together with the second largest subunit POLR2B/RPB2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR2A/RPB1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR2B/RPB2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. The reversible pyrophosphorolysis can occur at high pyrophosphate concentrations. Can proofread the nascent RNA transcript by means of a 3' -> 5' exonuclease activity. If a ribonucleotide is mis-incorporated, backtracks along the template DNA and cleaves the phosphodiester bond releasing the mis-incorporated 5'-ribonucleotide. Through its unique C-terminal domain (CTD, 52 heptapeptide tandem repeats) serves as a platform for assembly of factors that regulate transcription initiation, elongation and termination. CTD phosphorylation on Ser-5 mediates Pol II promoter escape, whereas phosphorylation on Ser-2 is required for Pol II pause release during transcription elongation and further pre-mRNA processing. Additionally, the regulation of gene expression levels depends on the balance between methylation and acetylation levels of the CTD-lysines. Initiation or early elongation steps of transcription of growth-factor-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression. Cooperates with mRNA splicing machinery in co-transcriptional 5'-end capping and co-transcriptional splicing of pre-mRNA ; RNA-dependent RNA polymerase that catalyzes the extension of a non-coding RNA (ncRNA) at the 3'-end using the four ribonucleoside triphosphates as substrates. An internal ncRNA sequence near the 3'-end serves as a template in a single-round Pol II-mediated RNA polymerization reaction. May decrease the stability of ncRNAs that repress Pol II-mediated gene transcription; (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicase and transcriptase for the viral RNA circular genome.
KEGG Pathway
R. polymerase (hsa03020 )
Nucleotide excision repair (hsa03420 )
Huntington disease (hsa05016 )
Reactome Pathway
Formation of the Early Elongation Complex (R-HSA-113418 )
Formation of HIV elongation complex in the absence of HIV Tat (R-HSA-167152 )
Formation of the HIV-1 Early Elongation Complex (R-HSA-167158 )
RNA Pol II CTD phosphorylation and interaction with CE during HIV infection (R-HSA-167160 )
HIV Transcription Initiation (R-HSA-167161 )
RNA Polymerase II HIV Promoter Escape (R-HSA-167162 )
Transcription of the HIV genome (R-HSA-167172 )
Formation of HIV-1 elongation complex containing HIV-1 Tat (R-HSA-167200 )
Pausing and recovery of Tat-mediated HIV elongation (R-HSA-167238 )
Abortive elongation of HIV-1 transcript in the absence of Tat (R-HSA-167242 )
Tat-mediated HIV elongation arrest and recovery (R-HSA-167243 )
Tat-mediated elongation of the HIV-1 transcript (R-HSA-167246 )
HIV elongation arrest and recovery (R-HSA-167287 )
Pausing and recovery of HIV elongation (R-HSA-167290 )
Viral Messenger RNA Synthesis (R-HSA-168325 )
MicroRNA (miRNA) biogenesis (R-HSA-203927 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
PIWI-interacting RNA (piRNA) biogenesis (R-HSA-5601884 )
Activation of anterior HOX genes in hindbrain development during early embryogenesis (R-HSA-5617472 )
RNA Polymerase II Pre-transcription Events (R-HSA-674695 )
Formation of TC-NER Pre-Incision Complex (R-HSA-6781823 )
Transcription-Coupled Nucleotide Excision Repair (TC-NER) (R-HSA-6781827 )
Dual incision in TC-NER (R-HSA-6782135 )
Gap-filling DNA repair synthesis and ligation in TC-NER (R-HSA-6782210 )
TP53 Regulates Transcription of DNA Repair Genes (R-HSA-6796648 )
FGFR2 alternative splicing (R-HSA-6803529 )
RNA polymerase II transcribes snRNA genes (R-HSA-6807505 )
mRNA Capping (R-HSA-72086 )
mRNA Splicing - Major Pathway (R-HSA-72163 )
mRNA Splicing - Minor Pathway (R-HSA-72165 )
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203 )
RNA Polymerase II Promoter Escape (R-HSA-73776 )
RNA Polymerase II Transcription Pre-Initiation And Promoter Opening (R-HSA-73779 )
RNA Polymerase II Transcription Initiation (R-HSA-75953 )
RNA Polymerase II Transcription Elongation (R-HSA-75955 )
RNA Polymerase II Transcription Initiation And Promoter Clearance (R-HSA-76042 )
RNA Pol II CTD phosphorylation and interaction with CE (R-HSA-77075 )
Signaling by FGFR2 IIIa TM (R-HSA-8851708 )
Estrogen-dependent gene expression (R-HSA-9018519 )
Inhibition of DNA recombination at telomere (R-HSA-9670095 )
Formation of RNA Pol II elongation complex (R-HSA-112382 )

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autism, susceptibility to, 15 DISYCG6A Definitive Autosomal dominant [1]
Melanoma DIS1RRCY Definitive Biomarker [2]
Meningioma DISPT4TG Definitive Genetic Variation [3]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [4]
Cardiac failure DISDC067 Strong Altered Expression [5]
Cardiomyopathy DISUPZRG Strong Biomarker [5]
Central nervous system neoplasm DISFC18W Strong Genetic Variation [6]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [7]
Congestive heart failure DIS32MEA Strong Altered Expression [5]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [8]
Gastric cancer DISXGOUK Strong Genetic Variation [9]
Glioma DIS5RPEH Strong Genetic Variation [6]
Neurodevelopmental disorder with hypotonia and variable intellectual and behavioral abnormalities DISDLBTL Strong Autosomal dominant [10]
Onychomycosis DISE4C4D Strong Biomarker [11]
Ovarian cancer DISZJHAP Strong Biomarker [8]
Ovarian neoplasm DISEAFTY Strong Biomarker [8]
Schizophrenia DISSRV2N Strong Biomarker [12]
Stomach cancer DISKIJSX Strong Genetic Variation [9]
Advanced cancer DISAT1Z9 moderate Biomarker [13]
Influenza DIS3PNU3 moderate Biomarker [14]
Neoplasm DISZKGEW moderate Altered Expression [4]
Triple negative breast cancer DISAMG6N moderate Biomarker [15]
Non-small-cell lung cancer DIS5Y6R9 Disputed Altered Expression [16]
Castration-resistant prostate carcinoma DISVGAE6 Limited Genetic Variation [17]
Clear cell renal carcinoma DISBXRFJ Limited Altered Expression [18]
Prostate cancer DISF190Y Limited Biomarker [19]
Prostate carcinoma DISMJPLE Limited Biomarker [19]
Renal cell carcinoma DISQZ2X8 Limited Altered Expression [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [20]
Estradiol DMUNTE3 Approved Estradiol increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [22]
Temozolomide DMKECZD Approved Temozolomide increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [24]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [25]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [26]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [27]
Selenium DM25CGV Approved Selenium increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [28]
Aspirin DM672AH Approved Aspirin increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [30]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [31]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [34]
Flavopiridol DMKSUOI Phase 2 Flavopiridol decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [36]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [38]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [40]
UNC0379 DMD1E4J Preclinical UNC0379 decreases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [42]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [43]
Milchsaure DM462BT Investigative Milchsaure increases the expression of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
10 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Quercetin DM3NC4M Approved Quercetin increases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [23]
Panobinostat DM58WKG Approved Panobinostat decreases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [29]
Dactinomycin DM2YGNW Approved Dactinomycin decreases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [32]
Deferasirox DM6ETS0 Approved Deferasirox decreases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [33]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [37]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [23]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [23]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [32]
5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole DM3JB6S Investigative 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole decreases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [45]
H-8 DM80QF9 Investigative H-8 decreases the phosphorylation of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of DNA-directed RNA polymerase II subunit RPB1 (POLR2A). [35]
------------------------------------------------------------------------------------

References

1 De novo POLR2A p.(Ile457Thr) variant associated with early-onset encephalopathy and cerebellar atrophy: expanding the phenotypic spectrum. Brain Dev. 2022 Aug;44(7):480-485. doi: 10.1016/j.braindev.2022.04.002. Epub 2022 Apr 20.
2 BRAF inhibition sensitizes melanoma cells to -amanitin via decreased RNA polymerase II assembly.Sci Rep. 2019 May 23;9(1):7779. doi: 10.1038/s41598-019-44112-7.
3 Clinical potential of meningioma genomic insights: a practical review for neurosurgeons.Neurosurg Focus. 2018 Jun;44(6):E10. doi: 10.3171/2018.2.FOCUS1849.
4 Aberrant activation of RPB1 is critical for cell overgrowth in acute myeloid leukemia.Exp Cell Res. 2019 Nov 15;384(2):111653. doi: 10.1016/j.yexcr.2019.111653. Epub 2019 Sep 28.
5 Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies.BMC Mol Biol. 2010 Mar 23;11:22. doi: 10.1186/1471-2199-11-22.
6 Genome-wide association study identifies multiple susceptibility loci for glioma.Nat Commun. 2015 Oct 1;6:8559. doi: 10.1038/ncomms9559.
7 TP53 loss creates therapeutic vulnerability incolorectal cancer.Nature. 2015 Apr 30;520(7549):697-701. doi: 10.1038/nature14418. Epub 2015 Apr 22.
8 Identification of potential prognostic TF-associated lncRNAs for predicting survival in ovarian cancer.J Cell Mol Med. 2019 Mar;23(3):1840-1851. doi: 10.1111/jcmm.14084. Epub 2018 Dec 13.
9 Association analysis of genetic variants in microRNA networks and gastric cancer risk in a Chinese Han population.J Cancer Res Clin Oncol. 2012 Jun;138(6):939-45. doi: 10.1007/s00432-012-1164-8. Epub 2012 Feb 17.
10 De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia. Am J Hum Genet. 2019 Aug 1;105(2):283-301. doi: 10.1016/j.ajhg.2019.06.016. Epub 2019 Jul 25.
11 Clinical spectrum of exophiala infections and a novel Exophiala species, Exophiala hongkongensis.J Clin Microbiol. 2013 Jan;51(1):260-7. doi: 10.1128/JCM.02336-12. Epub 2012 Nov 14.
12 Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk.Nat Commun. 2019 Feb 8;10(1):670. doi: 10.1038/s41467-019-08666-4.
13 Anticancer Opportunity Created by Loss of Tumor Suppressor Genes.Technol Cancer Res Treat. 2016 Dec;15(6):729-731. doi: 10.1177/1533034615604798. Epub 2015 Sep 15.
14 Eleutheroside B1 mediates its anti-influenza activity through POLR2A and N-glycosylation.Int J Mol Med. 2018 Nov;42(5):2776-2792. doi: 10.3892/ijmm.2018.3863. Epub 2018 Sep 7.
15 Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer.Nat Nanotechnol. 2019 Apr;14(4):388-397. doi: 10.1038/s41565-019-0381-6. Epub 2019 Feb 25.
16 Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer.BMC Cancer. 2006 Jul 26;6:200. doi: 10.1186/1471-2407-6-200.
17 Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II.Nat Commun. 2018 Oct 22;9(1):4394. doi: 10.1038/s41467-018-06811-z.
18 Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.Diagn Mol Pathol. 2011 Dec;20(4):212-7. doi: 10.1097/PDM.0b013e318212e0a9.
19 Systematic enrichment analysis of potentially functional regions for 103 prostate cancer risk-associated loci.Prostate. 2015 Sep;75(12):1264-76. doi: 10.1002/pros.23008. Epub 2015 May 25.
20 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
21 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
24 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
25 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
26 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
27 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
28 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
29 Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells. Mol Cancer Ther. 2014 May;13(5):1142-54.
30 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
31 Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics. 2004 Jan 15;16(2):204-11.
32 Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells. J Cell Physiol. 1994 Mar;158(3):417-26. doi: 10.1002/jcp.1041580305.
33 Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology. 2007 Oct 25;367(2):324-33. doi: 10.1016/j.virol.2007.06.011. Epub 2007 Jul 13.
34 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
35 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
36 Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias. Blood. 2011 Mar 24;117(12):3302-10. doi: 10.1182/blood-2010-09-310862. Epub 2011 Jan 14.
37 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
38 Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16669-74. doi: 10.1073/pnas.1108190108. Epub 2011 Sep 26.
39 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
40 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
41 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
42 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
43 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
44 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
45 Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood. 2004 Jul 15;104(2):509-18. doi: 10.1182/blood-2003-12-4121. Epub 2004 Mar 23.