General Information of Disease (ID: DISVGAE6)

Disease Name Castration-resistant prostate carcinoma
Definition A prostate carcinoma that is characterized by continued growth and spread despite the surgical removal of the testes or medical intervention to block androgen production.
Disease Hierarchy
DISMJPLE: Prostate carcinoma
DISVGAE6: Castration-resistant prostate carcinoma
Disease Identifiers
MONDO ID
MONDO_0850353
UMLS CUI
C1328504
MedGen ID
730224
SNOMED CT ID
427492003

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 3 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Bicalutamide DMZMSPF Approved Small molecular drug [1]
Everolimus DM8X2EH Approved Small molecular drug [2]
Sirolimus DMGW1ID Approved Small molecular drug [3]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 99 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCB11 TTUXCAF Limited Genetic Variation [4]
ABL2 TT1A6HL Limited Genetic Variation [5]
ATAD2 TT9A0HI Limited Altered Expression [6]
AVPR1A TT4TFGN Limited Biomarker [7]
BMP6 TT07RIB Limited Biomarker [8]
CAMKK2 TTV298Y Limited Altered Expression [9]
CAPN2 TTG5QB7 Limited Altered Expression [10]
CDC20 TTBKFDV Limited Altered Expression [11]
CDK19 TTNABU9 Limited Altered Expression [12]
CRTC1 TT4GO0F Limited Biomarker [13]
CSK TTX6F0Q Limited Biomarker [14]
FABP5 TTNT2S6 Limited Biomarker [15]
FKBP4 TTHY0FT Limited Biomarker [16]
GLI2 TT045OH Limited Biomarker [17]
GPR17 TTMPART Limited Biomarker [18]
GRPR TTC1MVT Limited Altered Expression [19]
HSD17B2 TT0PT1R Limited Altered Expression [20]
KLK2 TTJLNAW Limited Altered Expression [21]
LAMP1 TTC214J Limited Altered Expression [22]
LHCGR TT2O4W9 Limited Biomarker [23]
NR3C1 TTOZRK6 Limited Biomarker [24]
NUF2 TTIXBFP Limited Biomarker [25]
PABPC1 TTHC8EF Limited Altered Expression [26]
PIM1 TTTN5QW Limited Biomarker [27]
PRKAR2B TTW4Y2M Limited Biomarker [28]
PTP4A1 TTA8GFO Limited Biomarker [29]
RHO TTH0KSX Limited Biomarker [30]
RPS6KA2 TT0ZW9O Limited Altered Expression [31]
SGCA TTS9Q5V Limited Biomarker [32]
SLC47A1 TTMHCGA Limited Genetic Variation [33]
SLC5A6 TT61XTV Limited Genetic Variation [4]
SPOCK1 TTF23RE Limited Altered Expression [34]
SRD5A1 TTTU72V Limited Biomarker [35]
STEAP1 TT9E64S Limited Biomarker [36]
STEAP2 TTOXF5J Limited Altered Expression [21]
TFPI TT068JH Limited Altered Expression [37]
TNFRSF25 TTDV6BQ Limited Genetic Variation [38]
TRPM8 TTXDKTO Limited Altered Expression [39]
TST TT51OTS Limited Biomarker [40]
WDR5 TT7OFWB Limited Biomarker [41]
CCNA2 TTAMQ62 moderate Biomarker [42]
FGF8 TTIUF3J moderate Biomarker [43]
GAK TT0AGBL moderate Altered Expression [44]
HTR2B TT0K1SC moderate Altered Expression [45]
HTR4 TT07C3Y moderate Biomarker [45]
PNP TTMCF1Y moderate Biomarker [46]
AKR1C3 TT5ZWB6 Strong Biomarker [47]
BMX TTN2I9E Strong Biomarker [48]
BRD4 TTSRAOU Strong Altered Expression [49]
CD46 TTMS7DF Strong Biomarker [50]
CDK5R1 TTBYM6V Strong Biomarker [51]
CDK7 TTQYF7G Strong Biomarker [52]
CENPE TTZD5QR Strong Biomarker [53]
DDX5 TTZKPVC Strong Altered Expression [54]
DNAJB1 TTPXAWS Strong Biomarker [55]
E2F1 TTASI04 Strong Biomarker [56]
ENPEP TT9PBIL Strong Altered Expression [57]
EPHB6 TTZEMUY Strong Biomarker [58]
ESRRA TTPNQAC Strong Altered Expression [59]
GAD2 TT7UY6K Strong Biomarker [60]
GNRHR TT8R70G Strong Biomarker [61]
HOXB13 TTZ6I58 Strong Biomarker [62]
HSD17B13 TTDJYZR Strong Biomarker [63]
HSD17B4 TTL1WGS Strong Altered Expression [64]
HSPB1 TT9AZWY Strong Biomarker [65]
HSPB3 TTLH8WG Strong Biomarker [65]
IGFBP6 TTLAYV8 Strong Biomarker [66]
KDM1A TTNR0UQ Strong Altered Expression [67]
KLK5 TTULSEW Strong Biomarker [68]
LASP1 TTZJA87 Strong Altered Expression [69]
LIMK2 TTASMD8 Strong Biomarker [70]
MAGEC2 TTKGUEB Strong Biomarker [71]
MYCN TT9JBY5 Strong Altered Expression [72]
NSD1 TTTSJ3H Strong Biomarker [73]
PARP2 TTQ4V96 Strong Altered Expression [74]
PHF8 TT81PFE Strong Biomarker [75]
PLA2G2A TTO8QRU Strong Biomarker [76]
PLD1 TT3T17P Strong Biomarker [77]
PSCA TT9T4AV Strong Altered Expression [78]
RNF7 TTODWGT Strong Biomarker [79]
RPS6KA1 TTIXKA4 Strong Altered Expression [31]
SGK1 TTTV8EJ Strong Altered Expression [80]
SKP2 TT5B2EO Strong Biomarker [81]
SLC22A1 TTM5Q4V Strong Biomarker [82]
SLCO1B3 TTU86P0 Strong Genetic Variation [83]
SLCO2B1 TTDL3UZ Strong Genetic Variation [83]
SRD5A2 TTT02K8 Strong Genetic Variation [84]
STC2 TT4EFTR Strong Altered Expression [85]
STS TTHM0R1 Strong Biomarker [86]
STYK1 TTRMCYJ Strong Biomarker [87]
TNK2 TTIET93 Strong Biomarker [88]
TRIM24 TT9Q7AE Strong Altered Expression [89]
CCNE2 TTLDRGX Definitive Altered Expression [90]
CLU TTRL76H Definitive Biomarker [91]
EIF4E TTZGCP6 Definitive Biomarker [65]
GNRH1 TT0ID4A Definitive Altered Expression [92]
HSP90AA1 TT78R5H Definitive Altered Expression [93]
TMPRSS2 TT1GM2Z Definitive Biomarker [94]
TPT1 TT3PTB6 Definitive Biomarker [51]
------------------------------------------------------------------------------------
⏷ Show the Full List of 99 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC28A3 DT4YL5R Limited Genetic Variation [95]
SLC35A2 DT0567K Limited Altered Expression [96]
------------------------------------------------------------------------------------
This Disease Is Related to 9 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CHST3 DEQIZP2 Limited Altered Expression [97]
EGLN3 DEMQTKH Limited Biomarker [98]
HSD17B3 DEX8J7E Limited Altered Expression [99]
N6AMT1 DEOT0QC Limited Biomarker [100]
UGT2B17 DEAZDL8 Limited Altered Expression [101]
BLMH DECH1VP Strong Biomarker [102]
HSD17B7 DEDMWFX Strong Biomarker [63]
SRD5A3 DEZGVDW Strong Altered Expression [103]
UGT2B15 DENZ6B1 Definitive Altered Expression [101]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 DME(s)
This Disease Is Related to 153 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ACP1 OTJ9CKLU Limited Biomarker [104]
AHNAK OT6KH1WG Limited Altered Expression [105]
ANLN OTXJY54C Limited Altered Expression [106]
ANXA13 OTM33P73 Limited Genetic Variation [107]
ANXA7 OTLMD0TK Limited Altered Expression [108]
APH1A OT97F1TU Limited Altered Expression [109]
BRINP1 OTEUVSCP Limited Biomarker [110]
BTG2 OTZF6K1H Limited Altered Expression [111]
CAMK2N1 OTKCR5XL Limited Biomarker [112]
CCAR2 OTLUDG5T Limited Biomarker [110]
CCNB2 OTIEXTDK Limited Altered Expression [113]
CEP55 OTGSG2PA Limited Biomarker [114]
CHD1 OT9R9G0H Limited Biomarker [115]
COL6A1 OTYKSCOB Limited Altered Expression [116]
DAB2IP OTF456VC Limited Altered Expression [117]
DPT OTINRFC7 Limited Genetic Variation [38]
DUSP26 OTI7WIYN Limited Biomarker [118]
ELOVL7 OT89NYVC Limited Biomarker [119]
ERAL1 OTSH78HD Limited Biomarker [120]
GATAD2B OTJL128N Limited Altered Expression [121]
GPR158 OTYOC1RQ Limited Biomarker [122]
GPX2 OTXI2NTI Limited Biomarker [123]
GRB10 OTCKXGRC Limited Biomarker [124]
HECTD2 OTDIBGQV Limited Biomarker [125]
HEPACAM OT1MJ51D Limited Altered Expression [126]
HES6 OTWO5SCF Limited Biomarker [127]
HNRNPC OT47AK4C Limited Biomarker [128]
HNRNPDL OTB3BFCV Limited Biomarker [128]
ING3 OTDIJXFP Limited Altered Expression [129]
INTS6 OT6GDV46 Limited Altered Expression [130]
KDM3B OTZU5J5S Limited Biomarker [131]
KIDINS220 OTLBH2MA Limited Altered Expression [132]
KLF14 OT8BXLBS Limited Biomarker [133]
KRT18 OTVLQFIP Limited Altered Expression [134]
LAT2 OTWJDKIH Limited Altered Expression [135]
LMTK2 OT93MVIC Limited Altered Expression [136]
LPCAT1 OTCV7AGV Limited Biomarker [137]
MAGEA11 OTLT6Q3G Limited Altered Expression [138]
MAP2K4 OTZPZX11 Limited Biomarker [139]
MBD2 OTUQPP0R Limited Biomarker [140]
MED15 OT0D0JVD Limited Altered Expression [141]
MEF2A OTV2SF6E Limited Genetic Variation [142]
MEIS2 OTG4ADLM Limited Biomarker [143]
NCOA2 OTMQFPBB Limited Biomarker [144]
NCOR2 OTY917X0 Limited Biomarker [145]
NONO OTN36Q6U Limited Biomarker [146]
NR6A1 OTFZOOQ9 Limited Altered Expression [147]
NRF1 OTOXWNV8 Limited Biomarker [148]
OPRPN OT6K1ZD6 Limited Biomarker [29]
PHLPP1 OTIFXW8D Limited Biomarker [16]
PLRG1 OTIVZ5LL Limited Biomarker [29]
POLD3 OTEQEFQ2 Limited Altered Expression [121]
POLR2A OTHJQ1DZ Limited Genetic Variation [149]
PPP3CC OT0AQD93 Limited Biomarker [143]
PTOV1 OT94WT5X Limited Biomarker [150]
RAB1A OTKPHRD0 Limited Biomarker [125]
RBM39 OTCMPTF9 Limited Biomarker [151]
RBX1 OTYA1UIO Limited Biomarker [149]
SESN3 OTJRY1Y5 Limited Altered Expression [152]
SFPQ OTLCIAPJ Limited Altered Expression [109]
SP6 OTRAB1PN Limited Altered Expression [133]
SPOP OTP0107S Limited Genetic Variation [153]
SRA1 OTYOGMTG Limited Biomarker [154]
TRAM1 OT3I0H8E Limited Genetic Variation [38]
TRAT1 OTMPUNPD Limited Biomarker [155]
ATP1B1 OTTO6ZP4 moderate Genetic Variation [156]
DNAAF3 OT3OHO0O moderate Biomarker [157]
DNAH5 OTC21RUS moderate Biomarker [157]
DNAI1 OTF6C65Q moderate Biomarker [157]
FAM110B OTLYN2T1 moderate Biomarker [156]
MYBL2 OTZ3JX8Q moderate Biomarker [42]
PCBD1 OTDSRUD5 moderate Biomarker [157]
PRRX2 OT8UR4AU moderate Biomarker [158]
PRX OT34Z10B moderate Altered Expression [158]
PSAP OTUOEKY7 moderate Biomarker [159]
PYCR1 OTQHB52T moderate Biomarker [160]
RMC1 OT7K8MTJ moderate Biomarker [161]
SLC2A4RG OTW3LX8D moderate Altered Expression [162]
ST3GAL2 OT8WM21E moderate Altered Expression [163]
TACC2 OTW4M7HI moderate Altered Expression [164]
ABR OTZQK8JF Strong Biomarker [165]
ACSL3 OT3MWER1 Strong Biomarker [106]
ALKBH3 OTS1CD9Z Strong Biomarker [166]
ASH1L OTUT5NLJ Strong Biomarker [73]
BID OTOSHSHU Strong Biomarker [167]
BIRC6 OTCQJAB0 Strong Altered Expression [168]
C1GALT1 OT2ZSZ6P Strong Biomarker [169]
C1orf52 OT8RQW3W Strong Biomarker [170]
CAPN3 OTCHG3YK Strong Biomarker [171]
CCN3 OTOW5YL4 Strong Biomarker [172]
CCNG1 OT17IA9L Strong Altered Expression [173]
CHGA OTXYX5JH Strong Biomarker [174]
CLDN10 OT2CVAKY Strong Altered Expression [175]
COBLL1 OTQFN1TC Strong Posttranslational Modification [176]
COL11A2 OT3BQUBH Strong Biomarker [56]
CPNE1 OTH5YKSL Strong Altered Expression [177]
CRISP3 OTBSWMPL Strong Altered Expression [178]
DDAH2 OT8Q40G2 Strong Biomarker [81]
DHRS11 OTU3J0ZL Strong Biomarker [63]
DHX15 OT4F98TK Strong Altered Expression [179]
DLGAP5 OTWCN39U Strong Altered Expression [180]
DNER OT2GH2E5 Strong Biomarker [181]
EIF4G1 OT2CF1E6 Strong Biomarker [182]
FOXA1 OTEBY0TD Strong Biomarker [183]
FUT8 OTJJCVG1 Strong Altered Expression [184]
GGNBP2 OT7K9YZV Strong Altered Expression [185]
GREB1 OTU6ZA26 Strong Altered Expression [186]
GSTM3 OTLA2WJT Strong Genetic Variation [187]
H4C1 OTB71W46 Strong Posttranslational Modification [100]
HADHA OTO557N2 Strong Altered Expression [188]
HADHB OT4Y1I62 Strong Biomarker [188]
HNRNPK OTNPRM8U Strong Biomarker [189]
HSPA4 OT5HR0AR Strong Biomarker [190]
HSPB2 OTS01646 Strong Biomarker [65]
ID4 OTPMJ39I Strong Altered Expression [175]
KDM4B OT5P1UPY Strong Biomarker [140]
KDM6A OTZM3MJJ Strong Biomarker [191]
KIF4A OT3UWL7D Strong Biomarker [192]
KPNA2 OTU7FOE6 Strong Altered Expression [193]
LGALS4 OTKQCG0H Strong Biomarker [169]
LRRC4 OT7XJ70N Strong Biomarker [170]
MBTPS2 OT67CC7W Strong Biomarker [194]
MID1 OTWN1PGU Strong Biomarker [195]
MYSM1 OTO73N00 Strong Biomarker [196]
NCAPG OT1AI9EO Strong Altered Expression [197]
NPRL2 OTOB10MO Strong Altered Expression [198]
NR2E1 OTW47GKM Strong Biomarker [50]
PA2G4 OT7IG7HT Strong Altered Expression [199]
PAGE4 OT2VLWT0 Strong Altered Expression [71]
PCDH7 OTP091X8 Strong Biomarker [200]
PIR OT8ALXHU Strong Altered Expression [201]
PLA2G10 OTRZ2L5A Strong Biomarker [76]
PLCL1 OTJL2C79 Strong Biomarker [17]
PLXNB1 OTCA7JIT Strong Biomarker [202]
PRC1 OTHD0XS0 Strong Biomarker [203]
PTGES3 OTPPQWI0 Strong Biomarker [51]
PYCARD OT67RON3 Strong Biomarker [86]
RIOX1 OTN41QXP Strong Biomarker [204]
RNF41 OTN1DQOY Strong Altered Expression [205]
RRAS OTBBF28C Strong Biomarker [51]
SCIN OT6U09OL Strong Altered Expression [206]
SEMA3C OTEGUY7F Strong Genetic Variation [207]
SIAH2 OTKED2XN Strong Biomarker [208]
SMARCE1 OTAX4ITH Strong Altered Expression [209]
SMC3 OTWGFRHD Strong Biomarker [102]
SPRTN OT01D5CE Strong Biomarker [210]
SRRM4 OTALUISN Strong Biomarker [211]
ST3GAL1 OTFCO8QX Strong Biomarker [169]
TMED10 OTUXSHH7 Strong Biomarker [51]
TMPO OTL68EL4 Strong Altered Expression [188]
CBX2 OTOQ5WS4 Definitive Biomarker [212]
MAVS OTTQ0J64 Definitive Biomarker [213]
PDLIM2 OTEURRPD Definitive Biomarker [214]
------------------------------------------------------------------------------------
⏷ Show the Full List of 153 DOT(s)

References

1 Bicalutamide FDA Label
2 Everolimus FDA Label
3 Sirolimus FDA Label
4 Identification of novel SNPs associated with risk and prognosis in patients with castration-resistant prostate cancer.Pharmacogenomics. 2016 Dec;17(18):1979-1986. doi: 10.2217/pgs-2016-0134. Epub 2016 Nov 24.
5 Association of genetic variation of the six gene prognostic model for castration-resistant prostate cancer with survival.Prostate. 2019 Jan;79(1):73-80. doi: 10.1002/pros.23712. Epub 2018 Aug 23.
6 Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer.Cell Rep. 2017 Jun 6;19(10):2045-2059. doi: 10.1016/j.celrep.2017.05.049.
7 Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer.Sci Transl Med. 2019 Jun 26;11(498):eaaw4636. doi: 10.1126/scitranslmed.aaw4636.
8 Phospholipase C (PLC) Promotes Androgen Receptor Antagonist Resistance via the Bone Morphogenetic Protein (BMP)-6/SMAD Axis in a Castration-Resistant Prostate Cancer Cell Line.Med Sci Monit. 2019 Jun 15;25:4438-4449. doi: 10.12659/MSM.915828.
9 Concurrent regulation of LKB1 and CaMKK2 in the activation of AMPK in castrate-resistant prostate cancer by a well-defined polyherbal mixture with anticancer properties.BMC Complement Altern Med. 2018 Jun 18;18(1):188. doi: 10.1186/s12906-018-2255-0.
10 Silencing CAPN2 Expression Inhibited Castration-Resistant Prostate Cancer Cells Proliferation and Invasion via AKT/mTOR Signal Pathway.Biomed Res Int. 2017;2017:2593674. doi: 10.1155/2017/2593674. Epub 2017 Feb 9.
11 Cdc20/p55 mediates the resistance to docetaxel in castration-resistant prostate cancer in a Bim-dependent manner.Cancer Chemother Pharmacol. 2018 Jun;81(6):999-1006. doi: 10.1007/s00280-018-3578-8. Epub 2018 Mar 31.
12 Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer.Mol Cancer Res. 2015 Jan;13(1):98-106. doi: 10.1158/1541-7786.MCR-14-0273. Epub 2014 Sep 4.
13 Phase 2 clinical trial of TORC1 inhibition with everolimus in men with metastatic castration-resistant prostate cancer.Urol Oncol. 2020 Mar;38(3):79.e15-79.e22. doi: 10.1016/j.urolonc.2019.08.015. Epub 2019 Sep 12.
14 Downregulation of c-SRC kinase CSK promotes castration resistant prostate cancer and pinpoints a novel disease subclass.Oncotarget. 2015 Sep 8;6(26):22060-71. doi: 10.18632/oncotarget.4279.
15 Fatty acid activated PPAR promotes tumorigenicity of prostate cancer cells by up regulating VEGF via PPAR responsive elements of the promoter.Oncotarget. 2016 Feb 23;7(8):9322-39. doi: 10.18632/oncotarget.6975.
16 LncRNA PCAT1 activates AKT and NF-B signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKK complex.Nucleic Acids Res. 2019 May 7;47(8):4211-4225. doi: 10.1093/nar/gkz108.
17 Combination of phospholipase C knockdown with GANT61 sensitizes castrationresistant prostate cancer cells to enzalutamide by suppressing the androgen receptor signaling pathway.Oncol Rep. 2019 May;41(5):2689-2702. doi: 10.3892/or.2019.7054. Epub 2019 Mar 7.
18 Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer.Eur J Med Chem. 2018 May 25;152:542-559. doi: 10.1016/j.ejmech.2018.04.034. Epub 2018 Apr 21.
19 Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates.Prostate. 2012 Feb;72(3):318-25. doi: 10.1002/pros.21434. Epub 2011 Jul 7.
20 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer.J Steroid Biochem Mol Biol. 2018 Oct;183:192-201. doi: 10.1016/j.jsbmb.2018.06.013. Epub 2018 Jun 21.
21 Subgroups of Castration-resistant Prostate Cancer Bone Metastases Defined Through an Inverse Relationship Between Androgen Receptor Activity and Immune Response.Eur Urol. 2017 May;71(5):776-787. doi: 10.1016/j.eururo.2016.07.033. Epub 2016 Aug 3.
22 Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer.Int J Oncol. 2016 Jul;49(1):111-22. doi: 10.3892/ijo.2016.3522. Epub 2016 May 16.
23 Targeted cytotoxic analog of luteinizing hormone-releasing hormone (LHRH), AEZS-108 (AN-152), inhibits the growth of DU-145 human castration-resistant prostate cancer in vivo and in vitro through elevating p21 and ROS levels.Oncotarget. 2014 Jun 30;5(12):4567-78. doi: 10.18632/oncotarget.2146.
24 Heme Oxygenase 1 Impairs Glucocorticoid Receptor Activity in Prostate Cancer.Int J Mol Sci. 2019 Feb 26;20(5):1006. doi: 10.3390/ijms20051006.
25 Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer.Cancer Sci. 2017 Jul;108(7):1452-1457. doi: 10.1111/cas.13278. Epub 2017 Jun 23.
26 Poly (A) Binding Protein Cytoplasmic 1 Is a Novel Co-Regulator of the Androgen Receptor.PLoS One. 2015 Jul 15;10(7):e0128495. doi: 10.1371/journal.pone.0128495. eCollection 2015.
27 PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer.J Natl Cancer Inst. 2014 Dec 13;107(2):dju407. doi: 10.1093/jnci/dju407. Print 2015 Feb.
28 PRKAR2B plays an oncogenic role in the castration-resistant prostate cancer.Oncotarget. 2017 Jan 24;8(4):6114-6129. doi: 10.18632/oncotarget.14044.
29 Identification of PRL1 as a novel diagnostic and therapeutic target for castration-resistant prostate cancer by the Escherichia coli ampicillin secretion trap (CAST) method.Urol Oncol. 2014 Aug;32(6):769-78. doi: 10.1016/j.urolonc.2014.03.007. Epub 2014 Jun 23.
30 Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network.Oncotarget. 2015 Dec 22;6(41):43819-30. doi: 10.18632/oncotarget.6102.
31 Potential Role for YB-1 in Castration-Resistant Prostate Cancer and Resistance to Enzalutamide Through the Androgen Receptor V7.J Natl Cancer Inst. 2016 Feb 8;108(7). doi: 10.1093/jnci/djw005. Print 2016 Jul.
32 Risk factors for unplanned discontinuation of scheduled treatment in elderly patients with castration-resistant prostate cancer: results of the IBuTu study.J Cancer Res Clin Oncol. 2018 Mar;144(3):571-577. doi: 10.1007/s00432-017-2577-1. Epub 2018 Jan 4.
33 Multidrug and toxin extrusion 1 and human organic cation transporter 1 polymorphisms in patients with castration-resistant prostate cancer receiving metformin (SAKK 08/09).Prostate Cancer Prostatic Dis. 2015 Jun;18(2):167-72. doi: 10.1038/pcan.2015.8. Epub 2015 Mar 10.
34 Dual strands of pre-miR?50 (miR?50?p and miR?50?p) act as antitumor miRNAs targeting SPOCK1 in nave and castration-resistant prostate cancer.Int J Oncol. 2017 Jul;51(1):245-256. doi: 10.3892/ijo.2017.4008. Epub 2017 May 17.
35 A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.J Steroid Biochem Mol Biol. 2015 Jun;150:35-45. doi: 10.1016/j.jsbmb.2015.03.006. Epub 2015 Mar 19.
36 Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET.J Nucl Med. 2014 Dec;55(12):2045-9. doi: 10.2967/jnumed.114.145185. Epub 2014 Nov 5.
37 Androgen Receptor Splice Variant 7 Drives the Growth of Castration Resistant Prostate Cancer without Being Involved in the Efficacy of Taxane Chemotherapy.J Clin Med. 2018 Nov 16;7(11):444. doi: 10.3390/jcm7110444.
38 Overexpression of SOCS3 mediated by adenovirus vector in mouse and human castration-resistant prostate cancer cells increases the sensitivity to NK cells in vitro and in vivo.Cancer Gene Ther. 2019 Nov;26(11-12):388-399. doi: 10.1038/s41417-018-0075-5. Epub 2019 Jan 4.
39 RNA interference-mediated depletion of TRPM8 enhances the efficacy of epirubicin chemotherapy in prostate cancer LNCaP and PC3 cells.Oncol Lett. 2018 Apr;15(4):4129-4136. doi: 10.3892/ol.2018.7847. Epub 2018 Jan 24.
40 Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer.Int J Cancer. 2017 Nov 15;141(10):2121-2130. doi: 10.1002/ijc.30893. Epub 2017 Jul 31.
41 lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5.Mol Ther. 2017 Aug 2;25(8):1959-1973. doi: 10.1016/j.ymthe.2017.04.016. Epub 2017 May 6.
42 Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer.Cancer Res. 2011 Nov 1;71(21):6738-6748. doi: 10.1158/0008-5472.CAN-11-1882. Epub 2011 Sep 7.
43 A neutralizing anti-fibroblast growth factor (FGF) 8 monoclonal antibody shows anti-tumor activity against FGF8b-expressing LNCaP xenografts in androgen-dependent and -independent conditions.Prostate. 2008 May 1;68(6):640-50. doi: 10.1002/pros.20728.
44 Cyclin G-associated kinase: a novel androgen receptor-interacting transcriptional coactivator that is overexpressed in hormone refractory prostate cancer.Int J Cancer. 2006 Mar 1;118(5):1108-19. doi: 10.1002/ijc.21469.
45 Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines.Eur Urol. 2005 Jun;47(6):895-900. doi: 10.1016/j.eururo.2005.02.006. Epub 2005 Mar 3.
46 Molecular chemotherapy and chemotherapy: a new front against late-stage hormone-refractory prostate cancer.Clin Cancer Res. 2011 Jun 15;17(12):4006-18. doi: 10.1158/1078-0432.CCR-11-0248. Epub 2011 Apr 29.
47 AKR1C3 (type 5 17-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders.Mol Cell Endocrinol. 2019 Jun 1;489:82-91. doi: 10.1016/j.mce.2018.07.002. Epub 2018 Sep 19.
48 BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer.Cancer Res. 2018 Sep 15;78(18):5203-5215. doi: 10.1158/0008-5472.CAN-17-3615. Epub 2018 Jul 16.
49 MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway.Cancer Med. 2019 Apr;8(4):1474-1485. doi: 10.1002/cam4.2029. Epub 2019 Feb 19.
50 Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.Oncogene. 2018 Jun;37(25):3340-3355. doi: 10.1038/s41388-018-0198-z. Epub 2018 Mar 20.
51 Preclinical toxicology and toxicokinetic evaluation of ailanthone, a natural product against castration-resistant prostate cancer, in mice.Fitoterapia. 2019 Jul;136:104161. doi: 10.1016/j.fitote.2019.04.016. Epub 2019 Apr 30.
52 CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation.Cancer Discov. 2019 Nov;9(11):1538-1555. doi: 10.1158/2159-8290.CD-19-0189. Epub 2019 Aug 29.
53 LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression.Cancer Res. 2017 Oct 15;77(20):5479-5490. doi: 10.1158/0008-5472.CAN-17-0496. Epub 2017 Sep 15.
54 LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P.Mol Cancer Ther. 2019 Dec;18(12):2469-2479. doi: 10.1158/1535-7163.MCT-19-0095. Epub 2019 Aug 6.
55 Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer.Cancer Res. 2018 Jul 15;78(14):4022-4035. doi: 10.1158/0008-5472.CAN-17-3728. Epub 2018 May 15.
56 PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.Clin Cancer Res. 2019 Nov 15;25(22):6839-6851. doi: 10.1158/1078-0432.CCR-19-0317. Epub 2019 Aug 22.
57 Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells.Prostate. 2008 Nov 1;68(15):1666-73. doi: 10.1002/pros.20835.
58 Androgen-deprivation therapy with enzalutamide enhances prostate cancer metastasis via decreasing the EPHB6 suppressor expression.Cancer Lett. 2017 Nov 1;408:155-163. doi: 10.1016/j.canlet.2017.08.014. Epub 2017 Aug 18.
59 Nuclear receptor ERR and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer.Oncogene. 2018 Nov;37(48):6259-6274. doi: 10.1038/s41388-018-0409-7. Epub 2018 Jul 24.
60 Unsuspected Protumorigenic Signaling Role for the Oncometabolite GABA in Advanced Prostate Cancer.Cancer Res. 2019 Sep 15;79(18):4580-4581. doi: 10.1158/0008-5472.CAN-19-2182.
61 Gemcitabine Based Peptide Conjugate with Improved Metabolic Properties and Dual Mode of Efficacy.Mol Pharm. 2017 Mar 6;14(3):674-685. doi: 10.1021/acs.molpharmaceut.6b00961. Epub 2017 Feb 1.
62 Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13.Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6810-6815. doi: 10.1073/pnas.1718811115. Epub 2018 May 29.
63 Development of potent and selective indomethacin analogues for the inhibition of AKR1C3 (Type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase) in castrate-resistant prostate cancer. J Med Chem. 2013 Mar 28;56(6):2429-46.
64 Loss of an Androgen-Inactivating and Isoform-Specific HSD17B4 Splice Form Enables Emergence of Castration-Resistant Prostate Cancer.Cell Rep. 2018 Jan 16;22(3):809-819. doi: 10.1016/j.celrep.2017.12.081.
65 Correction: Targeting Hsp27/eIF4E interaction with phenazine compound: a promising alternative for castration-resistant prostate cancer treatment.Oncotarget. 2018 Jun 19;9(47):28797. doi: 10.18632/oncotarget.25683. eCollection 2018 Jun 19.
66 Insulin-like growth factor binding protein-6 inhibits prostate cancer cell proliferation: implication for anticancer effect of diethylstilbestrol in hormone refractory prostate cancer. Br J Cancer. 2005 Apr 25;92(8):1538-44. doi: 10.1038/sj.bjc.6602520.
67 LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models.Cancer Cell Int. 2018 May 9;18:71. doi: 10.1186/s12935-018-0568-1. eCollection 2018.
68 KLK5 gene expression is severely upregulated in androgen-independent prostate cancer cells after treatment with the chemotherapeutic agents docetaxel and mitoxantrone.Biol Chem. 2010 Apr;391(4):467-74. doi: 10.1515/BC.2010.026.
69 Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression.Prostate. 2017 Feb;77(3):309-320. doi: 10.1002/pros.23269. Epub 2016 Oct 24.
70 Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer.Cancer Lett. 2019 Apr 28;448:182-196. doi: 10.1016/j.canlet.2019.01.035. Epub 2019 Feb 1.
71 Expression of cancer/testis antigens in prostate cancer is associated with disease progression.Prostate. 2010 Dec 1;70(16):1778-87. doi: 10.1002/pros.21214.
72 N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.Mol Cancer. 2019 Jan 18;18(1):11. doi: 10.1186/s12943-019-0941-2.
73 Integrated Analysis of Genetic Abnormalities of the Histone Lysine Methyltransferases in Prostate Cancer.Med Sci Monit. 2019 Jan 7;25:193-239. doi: 10.12659/MSM.912294.
74 Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14573-14582. doi: 10.1073/pnas.1908547116. Epub 2019 Jul 2.
75 c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.Oncotarget. 2016 Nov 15;7(46):75585-75602. doi: 10.18632/oncotarget.12310.
76 Overexpression of secretory phospholipase A2-IIa supports cancer stem cell phenotype via HER/ERBB-elicited signaling in lung and prostate cancer cells.Int J Oncol. 2017 Jun;50(6):2113-2122. doi: 10.3892/ijo.2017.3964. Epub 2017 Apr 19.
77 Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.Br J Cancer. 2018 Jan;118(2):189-199. doi: 10.1038/bjc.2017.391. Epub 2017 Nov 14.
78 Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with CellSearch assay and association with bone metastases and with survival.Clin Chem. 2009 Apr;55(4):765-73. doi: 10.1373/clinchem.2008.117952. Epub 2009 Feb 20.
79 RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway.Sci Rep. 2017 Mar 2;7:43683. doi: 10.1038/srep43683.
80 Development and exploitation of a novel mutant androgen receptor modelling strategy to identify new targets for advanced prostate cancer therapy.Oncotarget. 2015 Sep 22;6(28):26029-40. doi: 10.18632/oncotarget.4347.
81 Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist.Oncogene. 2017 Jul 27;36(30):4299-4310. doi: 10.1038/onc.2017.64. Epub 2017 Mar 27.
82 Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth.Oncogene. 2016 Dec 8;35(49):6350-6358. doi: 10.1038/onc.2016.171. Epub 2016 Jun 6.
83 Polymorphisms of the androgen transporting gene SLCO2B1 may influence the castration resistance of prostate cancer and the racial differences in response to androgen deprivation.Prostate Cancer Prostatic Dis. 2013 Dec;16(4):336-40. doi: 10.1038/pcan.2013.23. Epub 2013 Jul 30.
84 SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy.Eur J Cancer. 2015 Sep;51(14):1962-9. doi: 10.1016/j.ejca.2015.06.122. Epub 2015 Jul 11.
85 Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancer.Cancer Sci. 2009 May;100(5):914-9. doi: 10.1111/j.1349-7006.2009.01117.x. Epub 2009 Feb 26.
86 Targeting the androgen receptor (AR) with AR degradation enhancer ASC-J9 led to increase docetaxel sensitivity via suppressing the p21 expression.Cancer Lett. 2019 Mar 1;444:35-44. doi: 10.1016/j.canlet.2018.09.025. Epub 2018 Sep 21.
87 Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer.Cancer Sci. 2009 Nov;100(11):2109-14. doi: 10.1111/j.1349-7006.2009.01277.x. Epub 2009 Jul 7.
88 Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells.Sci Rep. 2018 Jan 31;8(1):1954. doi: 10.1038/s41598-018-20172-z.
89 Therapeutic effects of human monoclonal PSMA antibody-mediated TRIM24 siRNA delivery in PSMA-positive castration-resistant prostate cancer.Theranostics. 2019 Feb 7;9(5):1247-1263. doi: 10.7150/thno.29884. eCollection 2019.
90 miRNA-30a functions as a tumor suppressor by downregulating cyclin E2 expression in castration-resistant prostate cancer.Mol Med Rep. 2016 Sep;14(3):2077-84. doi: 10.3892/mmr.2016.5469. Epub 2016 Jul 6.
91 siRNA Lipid Nanoparticle Potently Silences Clusterin and Delays Progression When Combined with Androgen Receptor Cotargeting in Enzalutamide-Resistant Prostate Cancer.Clin Cancer Res. 2015 Nov 1;21(21):4845-55. doi: 10.1158/1078-0432.CCR-15-0866. Epub 2015 Jun 23.
92 Increased incidence of luteinizing hormone-releasing hormone receptor gene messenger RNA expression in hormone-refractory human prostate cancers.Clin Cancer Res. 2001 Aug;7(8):2340-3.
93 Pharmacodynamic and Clinical Results from a Phase I/II Study of the HSP90 Inhibitor Onalespib in Combination with Abiraterone Acetate in Prostate Cancer.Clin Cancer Res. 2019 Aug 1;25(15):4624-4633. doi: 10.1158/1078-0432.CCR-18-3212. Epub 2019 May 21.
94 The influence of treatment sequence in the prognostic value of TMPRSS2-ERG as biomarker of taxane resistance in castration-resistant prostate cancer.Int J Cancer. 2019 Oct 1;145(7):1970-1981. doi: 10.1002/ijc.32238. Epub 2019 Mar 23.
95 A genetic variant in SLC28A3, rs56350726, is associated with progression to castration-resistant prostate cancer in a Korean population with metastatic prostate cancer.Oncotarget. 2017 May 30;8(57):96893-96902. doi: 10.18632/oncotarget.18298. eCollection 2017 Nov 14.
96 Characterisations of human prostate stem cells reveal deficiency in class I UGT enzymes as a novel mechanism for castration-resistant prostate cancer.Br J Cancer. 2013 Aug 20;109(4):950-6. doi: 10.1038/bjc.2013.399. Epub 2013 Jul 23.
97 Dihydrotestosterone synthesis pathways from inactive androgen 5-androstane-3,17-diol in prostate cancer cells: Inhibition of intratumoural 3-hydroxysteroid dehydrogenase activities by abiraterone.Sci Rep. 2016 Aug 26;6:32198. doi: 10.1038/srep32198.
98 MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer.Oncogene. 2019 Jun;38(24):4820-4834. doi: 10.1038/s41388-019-0760-3. Epub 2019 Feb 26.
99 Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer.Mol Med. 2011;17(7-8):657-64. doi: 10.2119/molmed.2010.00143. Epub 2011 Feb 22.
100 KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells.Nat Struct Mol Biol. 2019 May;26(5):361-371. doi: 10.1038/s41594-019-0219-9. Epub 2019 May 6.
101 Low ?adrenergic receptor level may promote development of castration resistant prostate cancer and altered steroid metabolism.Oncotarget. 2016 Jan 12;7(2):1878-94. doi: 10.18632/oncotarget.6479.
102 Effective targeting of RNA polymerase I in treatment-resistant prostate cancer.Prostate. 2019 Dec;79(16):1837-1851. doi: 10.1002/pros.23909. Epub 2019 Sep 16.
103 Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer.Cancer Sci. 2008 Jan;99(1):81-6. doi: 10.1111/j.1349-7006.2007.00656.x. Epub 2007 Nov 6.
104 Prediction of Time to Castration-Resistant Prostate Cancer Using Low-Molecular-Weight Protein Tyrosine Phosphatase Expression for Men with Metastatic Hormone-Nave Prostate Cancer.Urol Int. 2019;102(1):37-42. doi: 10.1159/000493324. Epub 2018 Oct 16.
105 BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK.Mol Cancer Res. 2019 Aug;17(8):1627-1638. doi: 10.1158/1541-7786.MCR-18-1279. Epub 2019 May 20.
106 Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer.Endocrinology. 2019 Feb 1;160(2):463-472. doi: 10.1210/en.2018-00923.
107 Safety and Immunogenicity of a Human Epidermal Growth Factor Receptor 1 (HER1)-Based Vaccine in Prostate Castration-Resistant Carcinoma Patients: A Dose-Escalation Phase I Study Trial.Front Pharmacol. 2017 May 10;8:263. doi: 10.3389/fphar.2017.00263. eCollection 2017.
108 High ANXA7 Potentiates Eucalyptol Toxicity in Hormone-refractory Prostate Cancer.Anticancer Res. 2018 Jul;38(7):3831-3842. doi: 10.21873/anticanres.12667.
109 Dysregulation of spliceosome gene expression in advanced prostate cancer by RNA-binding protein PSF.Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10461-10466. doi: 10.1073/pnas.1706076114. Epub 2017 Sep 11.
110 DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7.Oncogene. 2018 Mar;37(10):1326-1339. doi: 10.1038/s41388-017-0047-5. Epub 2017 Dec 18.
111 Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer.Oncogene. 2012 Oct 11;31(41):4460-71. doi: 10.1038/onc.2011.624. Epub 2012 Jan 23.
112 The tumor suppressive role of CAMK2N1 in castration-resistant prostate cancer.Oncotarget. 2014 Jun 15;5(11):3611-21. doi: 10.18632/oncotarget.1968.
113 Identification of genes associated with castrationresistant prostate cancer by gene expression profile analysis.Mol Med Rep. 2017 Nov;16(5):6803-6813. doi: 10.3892/mmr.2017.7488. Epub 2017 Sep 13.
114 MicroRNA-144-3p inhibits cell proliferation and promotes apoptosis in castration-resistant prostate cancer by targeting CEP55.Eur Rev Med Pharmacol Sci. 2018 Nov;22(22):7660-7670. doi: 10.26355/eurrev_201811_16383.
115 SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity.Clin Cancer Res. 2018 Nov 15;24(22):5585-5593. doi: 10.1158/1078-0432.CCR-18-0937. Epub 2018 Aug 1.
116 Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth.Oncotarget. 2015 Jun 10;6(16):14488-96. doi: 10.18632/oncotarget.3697.
117 The mechanism of DAB2IP in chemoresistance of prostate cancer cells.Clin Cancer Res. 2013 Sep 1;19(17):4740-9. doi: 10.1158/1078-0432.CCR-13-0954. Epub 2013 Jul 9.
118 Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study.Lancet Oncol. 2012 Nov;13(11):1114-24. doi: 10.1016/S1470-2045(12)70372-8. Epub 2012 Oct 9.
119 Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer.Oncogene. 2018 Feb 8;37(6):710-721. doi: 10.1038/onc.2017.385. Epub 2017 Oct 23.
120 Higher Risk of Fragility Fractures in Prostate Cancer Patients Treated with Combined Radium-223 and Abiraterone: Prednisone May Be the Culprit.Eur Urol. 2019 Jun;75(6):894-895. doi: 10.1016/j.eururo.2019.01.026. Epub 2019 Jan 31.
121 p68/DdX5 supports -catenin & RNAP II during androgen receptor mediated transcription in prostate cancer.PLoS One. 2013;8(1):e54150. doi: 10.1371/journal.pone.0054150. Epub 2013 Jan 17.
122 Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.PLoS One. 2015 Feb 18;10(2):e0117758. doi: 10.1371/journal.pone.0117758. eCollection 2015.
123 GPX2 overexpression is involved in cell proliferation and prognosis of castration-resistant prostate cancer.Carcinogenesis. 2014 Sep;35(9):1962-7. doi: 10.1093/carcin/bgu048. Epub 2014 Feb 22.
124 Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer.Eur Urol. 2018 Jun;73(6):949-960. doi: 10.1016/j.eururo.2018.02.019. Epub 2018 Mar 12.
125 MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A.Oncogene. 2014 May 22;33(21):2790-800. doi: 10.1038/onc.2013.230. Epub 2013 Jun 17.
126 HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a -secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamide in vitro.Int J Oncol. 2018 Jul;53(1):99-112. doi: 10.3892/ijo.2018.4370. Epub 2018 Apr 12.
127 HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.EMBO Mol Med. 2014 May;6(5):651-61. doi: 10.1002/emmm.201303581.
128 Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells.Cancer Lett. 2017 Nov 1;408:73-81. doi: 10.1016/j.canlet.2017.08.020. Epub 2017 Aug 24.
129 ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients.Tumour Biol. 2016 Jul;37(7):9731-8. doi: 10.1007/s13277-016-4802-y. Epub 2016 Jan 23.
130 Small RNA-induced INTS6 gene up-regulation suppresses castration-resistant prostate cancer cells by regulating -catenin signaling.Cell Cycle. 2018;17(13):1602-1613. doi: 10.1080/15384101.2018.1475825. Epub 2018 Aug 2.
131 Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer.Oncogene. 2020 Mar;39(10):2187-2201. doi: 10.1038/s41388-019-1116-8. Epub 2019 Dec 10.
132 MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity.Oncotarget. 2016 Jul 26;7(30):47444-47464. doi: 10.18632/oncotarget.10165.
133 KLF14 potentiates oxidative adaptation via modulating HO-1 signaling in castrate-resistant prostate cancer.Endocr Relat Cancer. 2019 Jan 1;26(1):181-195. doi: 10.1530/ERC-18-0383.
134 Downregulation of cytokeratin 18 is associated with paclitaxelresistance and tumor aggressiveness in prostate cancer.Int J Oncol. 2016 Apr;48(4):1730-6. doi: 10.3892/ijo.2016.3396. Epub 2016 Feb 17.
135 Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.Prostate. 2017 Feb;77(2):222-233. doi: 10.1002/pros.23263. Epub 2016 Oct 3.
136 Lemur Tyrosine Kinase 2, a novel target in prostate cancer therapy.Oncotarget. 2015 Jun 10;6(16):14233-46. doi: 10.18632/oncotarget.3899.
137 Effects of platelet-activating factor and its differential regulation by androgens and steroid hormones in prostate cancers.Br J Cancer. 2013 Sep 3;109(5):1279-86. doi: 10.1038/bjc.2013.480. Epub 2013 Aug 15.
138 Evolution of Melanoma Antigen-A11 (MAGEA11) During Primate Phylogeny.J Mol Evol. 2018 Apr;86(3-4):240-253. doi: 10.1007/s00239-018-9838-8. Epub 2018 Mar 24.
139 Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression.Int J Biochem Cell Biol. 2016 Oct;79:249-260. doi: 10.1016/j.biocel.2016.08.043. Epub 2016 Sep 1.
140 Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy.J Cell Physiol. 2020 Mar;235(3):2129-2138. doi: 10.1002/jcp.29117. Epub 2019 Aug 29.
141 MED15, encoding a subunit of the mediator complex, is overexpressed at high frequency in castration-resistant prostate cancer.Int J Cancer. 2014 Jul 1;135(1):19-26. doi: 10.1002/ijc.28647. Epub 2013 Dec 9.
142 MEF2activated long noncoding RNA PCGEM1 promotes cell proliferation in hormonerefractory prostate cancer through downregulation of miR?48a.Mol Med Rep. 2018 Jul;18(1):202-208. doi: 10.3892/mmr.2018.8977. Epub 2018 May 4.
143 A Constitutive Intrinsic Inflammatory Signaling Circuit Composed of miR-196b, Meis2, PPP3CC, and p65 Drives Prostate Cancer Castration Resistance.Mol Cell. 2017 Jan 5;65(1):154-167. doi: 10.1016/j.molcel.2016.11.034. Epub 2016 Dec 29.
144 Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor.Assay Drug Dev Technol. 2019 Nov/Dec;17(8):364-386. doi: 10.1089/adt.2019.940. Epub 2019 Sep 6.
145 DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4.Mol Cell. 2018 Aug 16;71(4):592-605.e4. doi: 10.1016/j.molcel.2018.06.036. Epub 2018 Jul 26.
146 Overexpression of p54(nrb)/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth.Oncotarget. 2018 Jan 8;9(12):10510-10524. doi: 10.18632/oncotarget.24063. eCollection 2018 Feb 13.
147 Expression screening of cancer/testis genes in prostate cancer identifies NR6A1 as a novel marker of disease progression and aggressiveness.Prostate. 2013 Jul;73(10):1103-14. doi: 10.1002/pros.22659. Epub 2013 Mar 26.
148 Regulation of the Antioxidant Response by MyoD Transcriptional Coactivator in Castration-resistant Prostate Cancer Cells.Urology. 2019 Jan;123:296.e9-296.e18. doi: 10.1016/j.urology.2018.04.028. Epub 2018 May 3.
149 Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II.Nat Commun. 2018 Oct 22;9(1):4394. doi: 10.1038/s41467-018-06811-z.
150 Prostate Tumor Overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells.Oncotarget. 2017 Jul 22;8(35):59165-59180. doi: 10.18632/oncotarget.19467. eCollection 2017 Aug 29.
151 Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide.Sci Rep. 2019 Jul 24;9(1):10739. doi: 10.1038/s41598-019-47189-2.
152 Reactive oxygen species induction by cabazitaxel through inhibiting Sestrin-3 in castration resistant prostate cancer.Oncotarget. 2017 Sep 21;8(50):87675-87683. doi: 10.18632/oncotarget.21147. eCollection 2017 Oct 20.
153 TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer.Cancer Cell. 2016 Jun 13;29(6):846-858. doi: 10.1016/j.ccell.2016.04.012. Epub 2016 May 26.
154 The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer.Cancer Res. 2013 Jul 1;73(13):3997-4008. doi: 10.1158/0008-5472.CAN-12-3929. Epub 2013 May 6.
155 TRIM-ing Ligand Dependence in Castration-Resistant Prostate Cancer.Cancer Cell. 2016 Jun 13;29(6):776-778. doi: 10.1016/j.ccell.2016.05.014.
156 Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer.Prostate. 2012 May 15;72(7):789-802. doi: 10.1002/pros.21487. Epub 2011 Sep 14.
157 Rare sugar D-allose induces programmed cell death in hormone refractory prostate cancer cells.Apoptosis. 2008 Sep;13(9):1121-34. doi: 10.1007/s10495-008-0232-7.
158 Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells.Free Radic Biol Med. 2011 Jul 1;51(1):78-87. doi: 10.1016/j.freeradbiomed.2011.04.001. Epub 2011 Apr 14.
159 Saposin C stimulates growth and invasion, activates p42/44 and SAPK/JNK signaling pathways of MAPK and upregulates uPA/uPAR expression in prostate cancer and stromal cells.Asian J Androl. 2005 Jun;7(2):147-58. doi: 10.1111/j.1745-7262.2005.00037.x.
160 Identification of novel androgen receptor target genes in prostate cancer.Mol Cancer. 2007 Jun 6;6:39. doi: 10.1186/1476-4598-6-39.
161 Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling.Cancer Res. 2009 Oct 1;69(19):7696-703. doi: 10.1158/0008-5472.CAN-08-4901. Epub 2009 Sep 22.
162 A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer.Oncogene. 2012 Feb 9;31(6):716-27. doi: 10.1038/onc.2011.273. Epub 2011 Jul 18.
163 Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-B-dependent transcriptional control of 2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells.Int J Cancer. 2011 Oct 15;129(8):1838-47. doi: 10.1002/ijc.25860. Epub 2011 Apr 13.
164 TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.Mol Endocrinol. 2012 May;26(5):748-61. doi: 10.1210/me.2011-1242. Epub 2012 Mar 28.
165 A hnRNP KAR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer.Int J Mol Sci. 2018 Jun 30;19(7):1920. doi: 10.3390/ijms19071920.
166 anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells.Curr Cancer Drug Targets. 2012 Sep;12(7):847-56. doi: 10.2174/156800912802429283.
167 A population pharmacokinetic analysis of the oral CYP17 lyase and androgen receptor inhibitor seviteronel in patients with advanced/metastatic castration-resistant prostate cancer or breast cancer.Cancer Chemother Pharmacol. 2019 Oct;84(4):759-770. doi: 10.1007/s00280-019-03908-0. Epub 2019 Jul 31.
168 BIRC6 Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer.Clin Cancer Res. 2017 Mar 15;23(6):1542-1551. doi: 10.1158/1078-0432.CCR-16-0718. Epub 2016 Sep 23.
169 O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.FASEB J. 2018 Jun 15:fj201800687. doi: 10.1096/fj.201800687. Online ahead of print.
170 Overexpression and gene amplification of BAG-1L in hormone-refractory prostate cancer.J Pathol. 2007 Aug;212(4):395-401. doi: 10.1002/path.2186.
171 NCL1, A Highly Selective Lysine-Specific Demethylase 1 Inhibitor, Suppresses Castration-Resistant Prostate Cancer Growth via Regulation of Apoptosis and Autophagy.J Clin Med. 2019 Mar 31;8(4):442. doi: 10.3390/jcm8040442.
172 CCN3-EZH2-AR feedback loop: new targets for enzalutamide and castration resistant prostate cancer.J Cell Commun Signal. 2017 Mar;11(1):89-91. doi: 10.1007/s12079-017-0378-6. Epub 2017 Mar 2.
173 MicroRNA-23b and microRNA-27b plus flutamide treatment enhances apoptosis rate and decreases CCNG1 expression in a castration-resistant prostate cancer cell line.Tumour Biol. 2018 Nov;40(11):1010428318803011. doi: 10.1177/1010428318803011.
174 Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis.Asian J Androl. 2018 Nov-Dec;20(6):561-566. doi: 10.4103/aja.aja_57_18.
175 Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52.Mol Oncol. 2017 Apr;11(4):337-357. doi: 10.1002/1878-0261.12028. Epub 2017 Mar 2.
176 COBLL1 modulates cell morphology and facilitates androgen receptor genomic binding in advanced prostate cancer.Proc Natl Acad Sci U S A. 2018 May 8;115(19):4975-4980. doi: 10.1073/pnas.1721957115. Epub 2018 Apr 23.
177 CPNE1 Is a Useful Prognostic Marker and Is Associated with TNF Receptor-Associated Factor 2 (TRAF2) Expression in Prostate Cancer.Med Sci Monit. 2017 Nov 19;23:5504-5514. doi: 10.12659/msm.904720.
178 Effect of androgen deprivation therapy on the expression of prostate cancer biomarkers MSMB and MSMB-binding protein CRISP3.Prostate Cancer Prostatic Dis. 2010 Dec;13(4):369-75. doi: 10.1038/pcan.2010.25. Epub 2010 Aug 3.
179 DHX15 is up-regulated in castration-resistant prostate cancer and required for androgen receptor sensitivity to low DHT concentrations.Prostate. 2019 May;79(6):657-666. doi: 10.1002/pros.23773. Epub 2019 Feb 3.
180 Identification of new octamer transcription factor 1-target genes upregulated in castration-resistant prostate cancer.Cancer Sci. 2019 Nov;110(11):3476-3485. doi: 10.1111/cas.14183. Epub 2019 Sep 16.
181 Maintenance of MYC expression promotes de novo resistance to BET bromodomain inhibition in castration-resistant prostate cancer.Sci Rep. 2019 Mar 7;9(1):3823. doi: 10.1038/s41598-019-40518-5.
182 Eukaryotic Translation Initiation Factor 4 Gamma 1 (eIF4G1) is upregulated during Prostate cancer progression and modulates cell growth and metastasis.Sci Rep. 2018 May 10;8(1):7459. doi: 10.1038/s41598-018-25798-7.
183 Targeting FOXA1-mediated repression of TGF- signaling suppresses castration-resistant prostate cancer progression.J Clin Invest. 2019 Feb 1;129(2):569-582. doi: 10.1172/JCI122367. Epub 2018 Dec 18.
184 Overexpression of (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells.Prostate Cancer Prostatic Dis. 2018 Apr;21(1):137-146. doi: 10.1038/s41391-017-0016-7. Epub 2018 Jan 16.
185 Effects of gametogenetin-binding protein 2 on proliferation, invasion and migration of prostate cancer PC-3 cells.Andrologia. 2020 Mar;52(2):e13488. doi: 10.1111/and.13488. Epub 2019 Dec 3.
186 GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate. 2006 Jun 1;66(8):886-94. doi: 10.1002/pros.20403.
187 Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress.Ann Oncol. 2017 Mar 1;28(3):569-575. doi: 10.1093/annonc/mdw646.
188 Regulation of protein kinase C-related kinase (PRK) signalling by the TP and TP isoforms of the human thromboxane A(2) receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer.Biochim Biophys Acta Mol Basis Dis. 2017 Apr;1863(4):838-856. doi: 10.1016/j.bbadis.2017.01.011. Epub 2017 Jan 18.
189 A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer.Mol Cancer. 2019 Jun 20;18(1):109. doi: 10.1186/s12943-019-1037-8.
190 Hsp70 Binds to the Androgen Receptor N-terminal Domain and Modulates the Receptor Function in Prostate Cancer Cells.Mol Cancer Ther. 2019 Jan;18(1):39-50. doi: 10.1158/1535-7163.MCT-18-0432. Epub 2018 Oct 8.
191 Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer.Oncotarget. 2017 Jul 8;8(37):62131-62142. doi: 10.18632/oncotarget.19100. eCollection 2017 Sep 22.
192 Targeting the KIF4A/AR Axis to Reverse Endocrine Therapy Resistance in Castration-resistant Prostate Cancer.Clin Cancer Res. 2020 Mar 15;26(6):1516-1528. doi: 10.1158/1078-0432.CCR-19-0396. Epub 2019 Dec 3.
193 KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy.Clin Cancer Res. 2011 Mar 1;17(5):1111-21. doi: 10.1158/1078-0432.CCR-10-0081. Epub 2011 Jan 10.
194 Nelfinavir inhibits regulated intramembrane proteolysis of sterol regulatory element binding protein-1 and activating transcription factor 6 in castration-resistant prostate cancer.FEBS J. 2012 Jul;279(13):2399-411. doi: 10.1111/j.1742-4658.2012.08619.x. Epub 2012 May 21.
195 A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling.Mol Cancer. 2014 Jun 9;13:146. doi: 10.1186/1476-4598-13-146.
196 MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3 signaling impedes castration-resistant prostate cancer growth.Aging (Albany NY). 2019 Nov 24;11(22):10644-10663. doi: 10.18632/aging.102482. Epub 2019 Nov 24.
197 Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC.Cancer Med. 2018 May;7(5):1988-2002. doi: 10.1002/cam4.1455. Epub 2018 Apr 2.
198 NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer.Prostate. 2019 Jan;79(1):44-53. doi: 10.1002/pros.23709. Epub 2018 Sep 3.
199 EBP1 inhibits translation of androgen receptor mRNA in castration resistant prostate cancer cells.Anticancer Res. 2011 Oct;31(10):3129-35.
200 Protocadherin 7 is overexpressed in castration resistant prostate cancer and promotes aberrant MEK and AKT signaling.Prostate. 2019 Nov;79(15):1739-1751. doi: 10.1002/pros.23898. Epub 2019 Aug 26.
201 Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p.Mol Oncol. 2019 Feb;13(2):322-337. doi: 10.1002/1878-0261.12405. Epub 2018 Dec 21.
202 SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1.EMBO Mol Med. 2018 Feb;10(2):219-238. doi: 10.15252/emmm.201707689.
203 BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1.Nat Commun. 2018 Feb 5;9(1):500. doi: 10.1038/s41467-018-02863-3.
204 Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer.Oncogene. 2019 Jun;38(25):5038-5049. doi: 10.1038/s41388-019-0774-x. Epub 2019 Mar 11.
205 The ErbB family and androgen receptor signaling are targets ofCelecoxib in prostate cancer.Cancer Lett. 2017 Aug 1;400:9-17. doi: 10.1016/j.canlet.2017.04.025. Epub 2017 Apr 25.
206 Loss of scinderin decreased expression of epidermal growth factor receptor and promoted apoptosis of castration-resistant prostate cancer cells.FEBS Open Bio. 2018 Apr 10;8(5):743-750. doi: 10.1002/2211-5463.12412. eCollection 2018 May.
207 Non-coding and coding genomic variants distinguish prostate cancer, castration-resistant prostate cancer, familial prostate cancer, and metastatic castration-resistant prostate cancer from each other.Mol Carcinog. 2019 Jun;58(6):862-874. doi: 10.1002/mc.22975. Epub 2019 Jan 31.
208 Commentary on "the E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity." Qi J, Tripathi M, Mishra R, Sahgal N, Fazli L, Ettinger S, Placzek WJ, Claps G, Chung LW, Bowtell D, Gleave M, Bhowmick N, Ronai ZA, Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.: Cancer Cell 2013;23(6):332-46.Urol Oncol. 2014 Feb;32(2):210-1. doi: 10.1016/j.urolonc.2013.08.020.
209 Aberrant BAF57 signaling facilitates prometastatic phenotypes.Clin Cancer Res. 2013 May 15;19(10):2657-67. doi: 10.1158/1078-0432.CCR-12-3049. Epub 2013 Mar 14.
210 Apalutamide: A new agent in the management of prostate cancer.J Oncol Pharm Pract. 2019 Dec;25(8):1968-1978. doi: 10.1177/1078155219864424. Epub 2019 Jul 30.
211 Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.Cancer Sci. 2019 Jan;110(1):245-255. doi: 10.1111/cas.13869. Epub 2018 Dec 12.
212 Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.Clin Epigenetics. 2016 Feb 12;8:16. doi: 10.1186/s13148-016-0182-9. eCollection 2016.
213 Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells.Mol Cancer Ther. 2014 Jul;13(7):1813-25. doi: 10.1158/1535-7163.MCT-13-1004. Epub 2014 Apr 30.
214 PDLIM2 suppression efficiently reduces tumor growth and invasiveness of human castration-resistant prostate cancer-like cells.Prostate. 2016 Feb 15;76(3):273-85. doi: 10.1002/pros.23118. Epub 2015 Oct 26.