General Information of Drug Off-Target (DOT) (ID: OTKDED8A)

DOT Name Luc7-like protein 3 (LUC7L3)
Synonyms Cisplatin resistance-associated-overexpressed protein; Luc7A; Okadaic acid-inducible phosphoprotein OA48-18; cAMP regulatory element-associated protein 1; CRE-associated protein 1; CREAP-1
Gene Name LUC7L3
Related Disease
Chronic renal failure ( )
Hyperglycemia ( )
Advanced cancer ( )
Cardiac failure ( )
Central retinal vein occlusion ( )
Chromosomal disorder ( )
Colon cancer ( )
Colorectal adenoma ( )
Colorectal carcinoma ( )
Congestive heart failure ( )
Non-alcoholic fatty liver disease ( )
Obesity ( )
Cardiac arrest ( )
Head and neck carcinoma ( )
Nasopharyngeal carcinoma ( )
Rhabdomyosarcoma ( )
Ventricular fibrillation ( )
Ventricular tachycardia ( )
Neoplasm ( )
UniProt ID
LC7L3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03194
Sequence
MISAAQLLDELMGRDRNLAPDEKRSNVRWDHESVCKYYLCGFCPAELFTNTRSDLGPCEK
IHDENLRKQYEKSSRFMKVGYERDFLRYLQSLLAEVERRIRRGHARLALSQNQQSSGAAG
PTGKNEEKIQVLTDKIDVLLQQIEELGSEGKVEEAQGMMKLVEQLKEERELLRSTTSTIE
SFAAQEKQMEVCEVCGAFLIVGDAQSRVDDHLMGKQHMGYAKIKATVEELKEKLRKRTEE
PDRDERLKKEKQEREEREKEREREREERERKRRREEEEREKERARDRERRKRSRSRSRHS
SRTSDRRCSRSRDHKRSRSRERRRSRSRDRRRSRSHDRSERKHRSRSRDRRRSKSRDRKS
YKHRSKSRDREQDRKSKEKEKRGSDDKKSSVKSGSREKQSEDTNTESKESDTKNEVNGTS
EDIKSEGDTQSN
Function Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing.
Tissue Specificity
Widely expressed. Highest levels in heart, brain, pancreas, thymus, ovary, small intestine and peripheral blood leukocytes, as well as cerebellum, putamen and pituitary gland. Lowest levels in lung, liver and kidney. Also expressed in fetal tissues, including brain, heart, kidney, thymus and lung.
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
Hyperglycemia DIS0BZB5 Definitive Biomarker [2]
Advanced cancer DISAT1Z9 Strong Genetic Variation [3]
Cardiac failure DISDC067 Strong Biomarker [4]
Central retinal vein occlusion DIS5ICKE Strong Biomarker [5]
Chromosomal disorder DISM5BB5 Strong Biomarker [6]
Colon cancer DISVC52G Strong Altered Expression [7]
Colorectal adenoma DISTSVHM Strong Biomarker [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [8]
Congestive heart failure DIS32MEA Strong Biomarker [4]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [3]
Obesity DIS47Y1K Strong Biomarker [9]
Cardiac arrest DIS9DIA4 moderate Biomarker [10]
Head and neck carcinoma DISOU1DS moderate Biomarker [11]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [11]
Rhabdomyosarcoma DISNR7MS moderate Biomarker [12]
Ventricular fibrillation DIS7IN76 moderate Biomarker [10]
Ventricular tachycardia DISIBXJ3 moderate Genetic Variation [10]
Neoplasm DISZKGEW Limited Genetic Variation [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Luc7-like protein 3 (LUC7L3). [14]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Luc7-like protein 3 (LUC7L3). [15]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Luc7-like protein 3 (LUC7L3). [16]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Luc7-like protein 3 (LUC7L3). [17]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Luc7-like protein 3 (LUC7L3). [18]
Selenium DM25CGV Approved Selenium decreases the expression of Luc7-like protein 3 (LUC7L3). [19]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Luc7-like protein 3 (LUC7L3). [20]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Luc7-like protein 3 (LUC7L3). [21]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Luc7-like protein 3 (LUC7L3). [19]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Luc7-like protein 3 (LUC7L3). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Luc7-like protein 3 (LUC7L3). [26]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Luc7-like protein 3 (LUC7L3). [27]
Arachidonic acid DMUOQZD Investigative Arachidonic acid decreases the expression of Luc7-like protein 3 (LUC7L3). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Luc7-like protein 3 (LUC7L3). [22]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Luc7-like protein 3 (LUC7L3). [24]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Luc7-like protein 3 (LUC7L3). [25]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Luc7-like protein 3 (LUC7L3). [25]
------------------------------------------------------------------------------------

References

1 Genetics of Chronic Kidney Disease Stages Across Ancestries: The PAGE Study.Front Genet. 2019 May 24;10:494. doi: 10.3389/fgene.2019.00494. eCollection 2019.
2 Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory (Cichorium intybus L.) for an antidiabetic effect.J Ethnopharmacol. 2018 Apr 6;215:241-248. doi: 10.1016/j.jep.2017.12.035. Epub 2018 Jan 9.
3 The association between nonalcoholic fatty liver disease and risk of colorectal adenoma and cancer incident and recurrence: a meta-analysis of observational studies.Expert Rev Gastroenterol Hepatol. 2019 Apr;13(4):385-395. doi: 10.1080/17474124.2019.1580143. Epub 2019 Feb 19.
4 RBM25/LUC7L3 function in cardiac sodium channel splicing regulation of human heart failure.Trends Cardiovasc Med. 2013 Jan;23(1):5-8. doi: 10.1016/j.tcm.2012.08.003. Epub 2012 Aug 31.
5 Two-Year Efficacy of Ranibizumab Plus Laser-Induced Chorioretinal Anastomosis vs Ranibizumab Monotherapy for Central Retinal Vein Occlusion: A Randomized Clinical Trial.JAMA Ophthalmol. 2018 Dec 1;136(12):1391-1397. doi: 10.1001/jamaophthalmol.2018.4973.
6 13-cis retinoic acid treatment for myelodysplastic syndromes.J Clin Oncol. 1986 Apr;4(4):589-95. doi: 10.1200/JCO.1986.4.4.589.
7 Structural Mechanism of the Oxygenase JMJD6 Recognition by the Extraterminal (ET) Domain of BRD4.Sci Rep. 2017 Nov 24;7(1):16272. doi: 10.1038/s41598-017-16588-8.
8 Clinical value of an adenosine triphosphate-based chemotherapy response assay in resectable stage III colorectal cancer.Ann Surg Treat Res. 2019 Aug;97(2):93-102. doi: 10.4174/astr.2019.97.2.93. Epub 2019 Jul 29.
9 Impact of Different Estimation Methods on Obesity-Attributable Mortality Levels and Trends: The Case of The Netherlands.Int J Environ Res Public Health. 2018 Sep 29;15(10):2146. doi: 10.3390/ijerph15102146.
10 Postanoxic alpha, theta or alpha-theta coma: Clinical setting and neurological outcome.Resuscitation. 2018 Mar;124:118-125. doi: 10.1016/j.resuscitation.2017.12.022. Epub 2017 Dec 22.
11 Whole blood transcriptome correlates with treatment response in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2012 Sep 17;31(1):76. doi: 10.1186/1756-9966-31-76.
12 Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny.J Transl Med. 2014 Jan 27;12:27. doi: 10.1186/1479-5876-12-27.
13 Double-blind, randomized phase 3 trial of low-dose 13-cis retinoic acid in the prevention of second primaries in head and neck cancer: Long-term follow-up of a trial of the Eastern Cooperative Oncology Group-ACRIN Cancer Research Group (C0590).Cancer. 2017 Dec 1;123(23):4653-4662. doi: 10.1002/cncr.30920. Epub 2017 Aug 7.
14 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
15 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
16 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
19 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
20 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
21 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
22 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
23 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
24 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
25 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
26 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
27 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
28 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.