General Information of Drug Off-Target (DOT) (ID: OTNQLL21)

DOT Name Dedicator of cytokinesis protein 8 (DOCK8)
Gene Name DOCK8
Related Disease
Combined immunodeficiency due to DOCK8 deficiency ( )
Cutaneous melanoma ( )
Allergic asthma ( )
Alzheimer disease ( )
Alzheimer disease 3 ( )
Asthma ( )
Autoimmune disease ( )
Bacterial infection ( )
Breast cancer ( )
Breast carcinoma ( )
Ear infection ( )
Hepatocellular carcinoma ( )
Immunodeficiency ( )
Intellectual disability ( )
Lung cancer ( )
Lung carcinoma ( )
Lung squamous cell carcinoma ( )
Multiple sclerosis ( )
Nervous system inflammation ( )
Neuroblastoma ( )
Neurodevelopmental disorder ( )
Pelvic inflammatory disease ( )
Severe combined immunodeficiency ( )
Skin and skin-structure infection ( )
Skin cancer ( )
Skin disease ( )
Systemic lupus erythematosus ( )
Type-1 diabetes ( )
Wiskott-Aldrich syndrome ( )
Food allergy ( )
Immune system disorder ( )
Autosomal dominant non-syndromic intellectual disability ( )
Acute lymphocytic leukaemia ( )
B-cell lymphoma ( )
Lymphoid leukemia ( )
Advanced cancer ( )
Chronic mucocutaneous candidiasis ( )
Complex neurodevelopmental disorder ( )
Cytomegalovirus retinitis ( )
Human papillomavirus infection ( )
Inborn error of immunity ( )
UniProt ID
DOCK8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06920 ; PF20422 ; PF20421 ; PF14429 ; PF11878
Sequence
MATLPSAERRAFALKINRYSSAEIRKQFTLPPNLGQYHRQSISTSGFPSLQLPQFYDPVE
PVDFEGLLMTHLNSLDVQLAQELGDFTDDDLDVVFTPKECRTLQPSLPEEGVELDPHVRD
CVQTYIREWLIVNRKNQGSPEICGFKKTGSRKDFHKTLPKQTFESETLECSEPAAQAGPR
HLNVLCDVSGKGPVTACDFDLRSLQPDKRLENLLQQVSAEDFEKQNEEARRTNRQAELFA
LYPSVDEEDAVEIRPVPECPKEHLGNRILVKLLTLKFEIEIEPLFASIALYDVKERKKIS
ENFHCDLNSDQFKGFLRAHTPSVAASSQARSAVFSVTYPSSDIYLVVKIEKVLQQGEIGD
CAEPYTVIKESDGGKSKEKIEKLKLQAESFCQRLGKYRMPFAWAPISLSSFFNVSTLERE
VTDVDSVVGRSSVGERRTLAQSRRLSERALSLEENGVGSNFKTSTLSVSSFFKQEGDRLS
DEDLFKFLADYKRSSSLQRRVKSIPGLLRLEISTAPEIINCCLTPEMLPVKPFPENRTRP
HKEILEFPTREVYVPHTVYRNLLYVYPQRLNFVNKLASARNITIKIQFMCGEDASNAMPV
IFGKSSGPEFLQEVYTAVTYHNKSPDFYEEVKIKLPAKLTVNHHLLFTFYHISCQQKQGA
SVETLLGYSWLPILLNERLQTGSYCLPVALEKLPPNYSMHSAEKVPLQNPPIKWAEGHKG
VFNIEVQAVSSVHTQDNHLEKFFTLCHSLESQVTFPIRVLDQKISEMALEHELKLSIICL
NSSRLEPLVLFLHLVLDKLFQLSVQPMVIAGQTANFSQFAFESVVAIANSLHNSKDLSKD
QHGRNCLLASYVHYVFRLPEVQRDVPKSGAPTALLDPRSYHTYGRTSAAAVSSKLLQARV
MSSSNPDLAGTHSAADEEVKNIMSSKIADRNCSRMSYYCSGSSDAPSSPAAPRPASKKHF
HEELALQMVVSTGMVRETVFKYAWFFFELLVKSMAQHVHNMDKRDSFRRTRFSDRFMDDI
TTIVNVVTSEIAALLVKPQKENEQAEKMNISLAFFLYDLLSLMDRGFVFNLIRHYCSQLS
AKLSNLPTLISMRLEFLRILCSHEHYLNLNLFFMNADTAPTSPCPSISSQNSSSCSSFQD
QKIASMFDLTSEYRQQHFLTGLLFTELAAALDAEGEGISKVQRKAVSAIHSLLSSHDLDP
RCVKPEVKVKIAALYLPLVGIILDALPQLCDFTVADTRRYRTSGSDEEQEGAGAINQNVA
LAIAGNNFNLKTSGIVLSSLPYKQYNMLNADTTRNLMICFLWIMKNADQSLIRKWIADLP
STQLNRILDLLFICVLCFEYKGKQSSDKVSTQVLQKSRDVKARLEEALLRGEGARGEMMR
RRAPGNDRFPGLNENLRWKKEQTHWRQANEKLDKTKAELDQEALISGNLATEAHLIILDM
QENIIQASSALDCKDSLLGGVLRVLVNSLNCDQSTTYLTHCFATLRALIAKFGDLLFEEE
VEQCFDLCHQVLHHCSSSMDVTRSQACATLYLLMRFSFGATSNFARVKMQVTMSLASLVG
RAPDFNEEHLRRSLRTILAYSEEDTAMQMTPFPTQVEELLCNLNSILYDTVKMREFQEDP
EMLMDLMYRIAKSYQASPDLRLTWLQNMAEKHTKKKCYTEAAMCLVHAAALVAEYLSMLE
DHSYLPVGSVSFQNISSNVLEESVVSEDTLSPDEDGVCAGQYFTESGLVGLLEQAAELFS
TGGLYETVNEVYKLVIPILEAHREFRKLTLTHSKLQRAFDSIVNKDHKRMFGTYFRVGFF
GSKFGDLDEQEFVYKEPAITKLPEISHRLEAFYGQCFGAEFVEVIKDSTPVDKTKLDPNK
AYIQITFVEPYFDEYEMKDRVTYFEKNFNLRRFMYTTPFTLEGRPRGELHEQYRRNTVLT
TMHAFPYIKTRISVIQKEEFVLTPIEVAIEDMKKKTLQLAVAINQEPPDAKMLQMVLQGS
VGATVNQGPLEVAQVFLAEIPADPKLYRHHNKLRLCFKEFIMRCGEAVEKNKRLITADQR
EYQQELKKNYNKLKENLRPMIERKIPELYKPIFRVESQKRDSFHRSSFRKCETQLSQGS
Function
Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP. During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC. Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane. Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing.
Tissue Specificity Expressed in peripheral blood mononuclear cells (PBMCs).
Reactome Pathway
RAC1 GTPase cycle (R-HSA-9013149 )
RHOJ GTPase cycle (R-HSA-9013409 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
CDC42 GTPase cycle (R-HSA-9013148 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Combined immunodeficiency due to DOCK8 deficiency DISRXLGV Definitive Autosomal recessive [1]
Cutaneous melanoma DIS3MMH9 Definitive Genetic Variation [2]
Allergic asthma DISHF0H3 Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
Alzheimer disease 3 DISVT69G Strong Biomarker [4]
Asthma DISW9QNS Strong Biomarker [3]
Autoimmune disease DISORMTM Strong Biomarker [5]
Bacterial infection DIS5QJ9S Strong Altered Expression [6]
Breast cancer DIS7DPX1 Strong Genetic Variation [7]
Breast carcinoma DIS2UE88 Strong Genetic Variation [7]
Ear infection DIS8ZWQ4 Strong Genetic Variation [8]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [9]
Immunodeficiency DIS093I0 Strong Biomarker [5]
Intellectual disability DISMBNXP Strong Genetic Variation [10]
Lung cancer DISCM4YA Strong Altered Expression [7]
Lung carcinoma DISTR26C Strong Altered Expression [7]
Lung squamous cell carcinoma DISXPIBD Strong Biomarker [11]
Multiple sclerosis DISB2WZI Strong Altered Expression [12]
Nervous system inflammation DISB3X5A Strong Biomarker [12]
Neuroblastoma DISVZBI4 Strong Biomarker [13]
Neurodevelopmental disorder DIS372XH Strong Genetic Variation [14]
Pelvic inflammatory disease DISWQR4J Strong Genetic Variation [15]
Severe combined immunodeficiency DIS6MF4Q Strong Biomarker [16]
Skin and skin-structure infection DIS3F9EY Strong Biomarker [17]
Skin cancer DISTM18U Strong Biomarker [5]
Skin disease DISDW8R6 Strong Biomarker [18]
Systemic lupus erythematosus DISI1SZ7 Strong Biomarker [19]
Type-1 diabetes DIS7HLUB Strong Biomarker [20]
Wiskott-Aldrich syndrome DISATMDB Strong Biomarker [21]
Food allergy DISMQ1BP moderate Altered Expression [22]
Immune system disorder DISAEGPH moderate Genetic Variation [23]
Autosomal dominant non-syndromic intellectual disability DISD6L06 Supportive Autosomal dominant [10]
Acute lymphocytic leukaemia DISPX75S Disputed Genetic Variation [24]
B-cell lymphoma DISIH1YQ Disputed Genetic Variation [24]
Lymphoid leukemia DIS65TYQ Disputed Genetic Variation [24]
Advanced cancer DISAT1Z9 Limited Genetic Variation [25]
Chronic mucocutaneous candidiasis DISPSGYF Limited Genetic Variation [26]
Complex neurodevelopmental disorder DISB9AFI Limited Autosomal dominant [27]
Cytomegalovirus retinitis DIS5JC9D Limited Genetic Variation [28]
Human papillomavirus infection DISX61LX Limited Biomarker [29]
Inborn error of immunity DISNGCMN Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Nitazoxanide DMOWLVG Approved Dedicator of cytokinesis protein 8 (DOCK8) affects the response to substance of Nitazoxanide. [43]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Dedicator of cytokinesis protein 8 (DOCK8). [30]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [31]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [32]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [33]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [34]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [35]
Testosterone DM7HUNW Approved Testosterone increases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [35]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [36]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [37]
Fenfluramine DM0762O Phase 3 Fenfluramine increases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [38]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [39]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [40]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [41]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [34]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Dedicator of cytokinesis protein 8 (DOCK8). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.Nat Commun. 2018 Nov 14;9(1):4774. doi: 10.1038/s41467-018-06649-5.
3 IL-21 alleviates allergic asthma in DOCK8-knockout mice.Biochem Biophys Res Commun. 2018 Jun 18;501(1):92-99. doi: 10.1016/j.bbrc.2018.04.179. Epub 2018 May 8.
4 Quantitative profiling of cytokines and chemokines in DOCK8-deficient and atopic dermatitis patients.Allergy. 2019 Feb;74(2):370-379. doi: 10.1111/all.13610. Epub 2018 Oct 15.
5 Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome.Immunol Rev. 2019 Jan;287(1):9-19. doi: 10.1111/imr.12723.
6 Novel DOCK8 gene mutations lead to absence of protein expression in patients with hyper-IgE syndrome.Immunol Res. 2016 Feb;64(1):260-71. doi: 10.1007/s12026-015-8745-y.
7 Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer.Int J Oncol. 2006 Feb;28(2):321-8.
8 DOCK8 Deficiency Presenting as an IPEX-Like Disorder.J Clin Immunol. 2017 Nov;37(8):811-819. doi: 10.1007/s10875-017-0451-1. Epub 2017 Oct 23.
9 Novel PNLIPRP3 and DOCK8 gene expression and prognostic implications of DNA loss on chromosome 10q25.3 in hepatocellular carcinoma.Asian Pac J Cancer Prev. 2009 Jul-Sep;10(3):501-6.
10 Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics. 2008 Feb;91(2):195-202. doi: 10.1016/j.ygeno.2007.10.011. Epub 2007 Dec 3.
11 Frequent silence of chromosome 9p, homozygous DOCK8, DMRT1 and DMRT3 deletion at 9p24.3 in squamous cell carcinoma of the lung.Int J Oncol. 2010 Aug;37(2):327-35.
12 LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis.J Exp Med. 2017 Jan;214(1):209-226. doi: 10.1084/jem.20160068.
13 Mutational dynamics between primary and relapse neuroblastomas.Nat Genet. 2015 Aug;47(8):872-7. doi: 10.1038/ng.3349. Epub 2015 Jun 29.
14 Rare structural variants in the DOCK8 gene identified in a cohort of 439 patients with neurodevelopmental disorders.Sci Rep. 2018 Jun 21;8(1):9449. doi: 10.1038/s41598-018-27824-0.
15 DOCK8 mutation diagnosed using whole-exome sequencing of the dried blood spot-derived DNA: a case report of an Iraqi girl diagnosed in Japan.BMC Med Genet. 2019 Jun 26;20(1):114. doi: 10.1186/s12881-019-0837-4.
16 DOCK family proteins: key players in immune surveillance mechanisms.Int Immunol. 2020 Jan 9;32(1):5-15. doi: 10.1093/intimm/dxz067.
17 Successful interferon-alpha 2b therapy for unremitting warts in a patient with DOCK8 deficiency.Clin Immunol. 2014 Jul;153(1):104-108. doi: 10.1016/j.clim.2014.04.005. Epub 2014 Apr 15.
18 The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction.Nat Commun. 2017 Jan 9;8:13946. doi: 10.1038/ncomms13946.
19 Ten-year follow-up of a DOCK8-deficient child with features of systemic lupus erythematosus.Pediatrics. 2014 Nov;134(5):e1458-63. doi: 10.1542/peds.2013-1383.
20 A novel Dock8 gene mutation confers diabetogenic susceptibility in the LEW.1AR1/Ztm-iddm rat, an animal model of human type 1 diabetes.Diabetologia. 2015 Dec;58(12):2800-9. doi: 10.1007/s00125-015-3757-7. Epub 2015 Sep 12.
21 Wiskott-Aldrich Syndrome (WAS) and Dedicator of Cytokinesis 8- (DOCK8) Deficiency.Front Pediatr. 2019 Nov 5;7:451. doi: 10.3389/fped.2019.00451. eCollection 2019.
22 Phenotyping and long-term follow up of patients with hyper IgE syndrome.Allergol Immunopathol (Madr). 2019 Mar-Apr;47(2):152-158. doi: 10.1016/j.aller.2018.07.009. Epub 2018 Sep 29.
23 Deficient T Cell Receptor Excision Circles (TRECs) in autosomal recessive hyper IgE syndrome caused by DOCK8 mutation: implications for pathogenesis and potential detection by newborn screening.Clin Immunol. 2011 Nov;141(2):128-32. doi: 10.1016/j.clim.2011.06.003. Epub 2011 Jun 21.
24 Compound Heterozygous DOCK8 Mutations in a Patient with B Lymphoblastic Leukemia and EBV-Associated Diffuse Large B Cell Lymphoma.J Clin Immunol. 2019 Aug;39(6):592-595. doi: 10.1007/s10875-019-00663-y. Epub 2019 Jul 2.
25 Skewed B cell receptor repertoire and reduced antibody avidity in patients with DOCK8 deficiency.Scand J Immunol. 2019 Jun;89(6):e12759. doi: 10.1111/sji.12759. Epub 2019 Mar 18.
26 Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes T(H)17cell differentiation.J Allergy Clin Immunol. 2016 Nov;138(5):1384-1394.e2. doi: 10.1016/j.jaci.2016.04.023. Epub 2016 May 24.
27 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
28 Clinical, immunological and genetic features in Taiwanese patients with the phenotype of hyper-immunoglobulin E recurrent infection syndromes (HIES).Immunobiology. 2011 Aug;216(8):909-17. doi: 10.1016/j.imbio.2011.01.008. Epub 2011 Jan 18.
29 Warts and all: human papillomavirus in primary immunodeficiencies.J Allergy Clin Immunol. 2012 Nov;130(5):1030-48. doi: 10.1016/j.jaci.2012.07.049. Epub 2012 Oct 1.
30 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
31 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
32 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
33 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
34 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
35 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
36 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
37 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
38 Fenfluramine-induced gene dysregulation in human pulmonary artery smooth muscle and endothelial cells. Pulm Circ. 2011 Jul-Sep;1(3):405-18. doi: 10.4103/2045-8932.87310.
39 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
40 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
41 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
42 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
43 Population-based in vitro hazard and concentration-response assessment of chemicals: the 1000 genomes high-throughput screening study. Environ Health Perspect. 2015 May;123(5):458-66. doi: 10.1289/ehp.1408775. Epub 2015 Jan 13.