General Information of Drug Off-Target (DOT) (ID: OTS88GSD)

DOT Name Latent-transforming growth factor beta-binding protein 2 (LTBP2)
Synonyms LTBP-2
Gene Name LTBP2
Related Disease
Glaucoma 3, primary congenital, D ( )
Microspherophakia and/or megalocornea, with ectopia lentis and with or without secondary glaucoma ( )
Alzheimer disease ( )
Benign neoplasm ( )
Bone osteosarcoma ( )
Cardiac disease ( )
Cardiac failure ( )
Congestive heart failure ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Esophageal squamous cell carcinoma ( )
Hepatitis ( )
Hepatitis A virus infection ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Isolated ectopia lentis ( )
Leiomyoma ( )
Melanoma ( )
Myocardial infarction ( )
Neoplasm ( )
Open-angle glaucoma ( )
OPTN-related open angle glaucoma ( )
Osteosarcoma ( )
Primary congenital glaucoma ( )
Thyroid gland carcinoma ( )
Uterine fibroids ( )
Weill-Marchesani 4 syndrome, recessive ( )
Meningioma ( )
Nasopharyngeal carcinoma ( )
Pulmonary emphysema ( )
Weill-Marchesani syndrome 3 ( )
Congenital glaucoma ( )
Glaucoma secondary to spherophakia/ectopia lentis and megalocornea ( )
Weill-Marchesani syndrome ( )
Megalocornea ( )
Advanced cancer ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Glaucoma/ocular hypertension ( )
Malignant mesothelioma ( )
Marfan syndrome ( )
Matthew-Wood syndrome ( )
Mesothelioma ( )
Pancreatic cancer ( )
Pancreatic ductal carcinoma ( )
Stomach cancer ( )
UniProt ID
LTBP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00008 ; PF07645 ; PF00683
Sequence
MRPRTKARSPGRALRNPWRGFLPLTLALFVGAGHAQRDPVGRYEPAGGDANRLRRPGGSY
PAAAAAKVYSLFREQDAPVAGLQPVERAQPGWGSPRRPTEAEARRPSRAQQSRRVQPPAQ
TRRSTPLGQQQPAPRTRAAPALPRLGTPQRSGAAPPTPPRGRLTGRNVCGGQCCPGWTTA
NSTNHCIKPVCEPPCQNRGSCSRPQLCVCRSGFRGARCEEVIPDEEFDPQNSRLAPRRWA
ERSPNLRRSSAAGEGTLARAQPPAPQSPPAPQSPPAGTLSGLSQTHPSQQHVGLSRTVRL
HPTATASSQLSSNALPPGPGLEQRDGTQQAVPLEHPSSPWGLNLTEKIKKIKIVFTPTIC
KQTCARGHCANSCERGDTTTLYSQGGHGHDPKSGFRIYFCQIPCLNGGRCIGRDECWCPA
NSTGKFCHLPIPQPDREPPGRGSRPRALLEAPLKQSTFTLPLSNQLASVNPSLVKVHIHH
PPEASVQIHQVAQVRGGVEEALVENSVETRPPPWLPASPGHSLWDSNNIPARSGEPPRPL
PPAAPRPRGLLGRCYLNTVNGQCANPLLELTTQEDCCGSVGAFWGVTLCAPCPPRPASPV
IENGQLECPQGYKRLNLTHCQDINECLTLGLCKDAECVNTRGSYLCTCRPGLMLDPSRSR
CVSDKAISMLQGLCYRSLGPGTCTLPLAQRITKQICCCSRVGKAWGSECEKCPLPGTEAF
REICPAGHGYTYASSDIRLSMRKAEEEELARPPREQGQRSSGALPGPAERQPLRVVTDTW
LEAGTIPDKGDSQAGQVTTSVTHAPAWVTGNATTPPMPEQGIAEIQEEQVTPSTDVLVTL
STPGIDRCAAGATNVCGPGTCVNLPDGYRCVCSPGYQLHPSQAYCTDDNECLRDPCKGKG
RCINRVGSYSCFCYPGYTLATSGATQECQDINECEQPGVCSGGQCTNTEGSYHCECDQGY
IMVRKGHCQDINECRHPGTCPDGRCVNSPGSYTCLACEEGYRGQSGSCVDVNECLTPGVC
AHGKCTNLEGSFRCSCEQGYEVTSDEKGCQDVDECASRASCPTGLCLNTEGSFACSACEN
GYWVNEDGTACEDLDECAFPGVCPSGVCTNTAGSFSCKDCDGGYRPSPLGDSCEDVDECE
DPQSSCLGGECKNTVGSYQCLCPQGFQLANGTVCEDVNECMGEEHCAPHGECLNSHGSFF
CLCAPGFVSAEGGTSCQDVDECATTDPCVGGHCVNTEGSFNCLCETGFQPSPESGECVDI
DECEDYGDPVCGTWKCENSPGSYRCVLGCQPGFHMAPNGDCIDIDECANDTMCGSHGFCD
NTDGSFRCLCDQGFEISPSGWDCVDVNECELMLAVCGAALCENVEGSFLCLCASDLEEYD
AQEGHCRPRGAGGQSMSEAPTGDHAPAPTRMDCYSGQKGHAPCSSVLGRNTTQAECCCTQ
GASWGDACDLCPSEDSAEFSEICPSGKGYIPVEGAWTFGQTMYTDADECVIFGPGLCPNG
RCLNTVPGYVCLCNPGFHYDASHKKCEDHDECQDLACENGECVNTEGSFHCFCSPPLTLD
LSQQRCMNSTSSTEDLPDHDIHMDICWKKVTNDVCSEPLRGHRTTYTECCCQDGEAWSQQ
CALCPPRSSEVYAQLCNVARIEAEREAGVHFRPGYEYGPGPDDLHYSIYGPDGAPFYNYL
GPEDTVPEPAFPNTAGHSADRTPILESPLQPSELQPHYVASHPEPPAGFEGLQAEECGIL
NGCENGRCVRVREGYTCDCFEGFQLDAAHMACVDVNECDDLNGPAVLCVHGYCENTEGSY
RCHCSPGYVAEAGPPHCTAKE
Function May play an integral structural role in elastic-fiber architectural organization and/or assembly.
Tissue Specificity Expressed in the aorta (at protein level). Expressed in lung, weakly expressed in heart, placenta, liver and skeletal muscle.
Reactome Pathway
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
Molecules associated with elastic fibres (R-HSA-2129379 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Glaucoma 3, primary congenital, D DISE3DJ5 Definitive Autosomal recessive [1]
Microspherophakia and/or megalocornea, with ectopia lentis and with or without secondary glaucoma DISPDYFL Definitive Autosomal recessive [2]
Alzheimer disease DISF8S70 Strong Genetic Variation [3]
Benign neoplasm DISDUXAD Strong Altered Expression [4]
Bone osteosarcoma DIST1004 Strong Biomarker [5]
Cardiac disease DISVO1I5 Strong Altered Expression [6]
Cardiac failure DISDC067 Strong Altered Expression [7]
Congestive heart failure DIS32MEA Strong Altered Expression [7]
Dilated cardiomyopathy DISX608J Strong Biomarker [6]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Altered Expression [6]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [8]
Hepatitis DISXXX35 Strong Biomarker [4]
Hepatitis A virus infection DISUMFQV Strong Biomarker [4]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [9]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [4]
Isolated ectopia lentis DISJWTN6 Strong Biomarker [10]
Leiomyoma DISLDDFN Strong Biomarker [11]
Melanoma DIS1RRCY Strong Biomarker [12]
Myocardial infarction DIS655KI Strong Genetic Variation [13]
Neoplasm DISZKGEW Strong Biomarker [4]
Open-angle glaucoma DISSZEE8 Strong Genetic Variation [14]
OPTN-related open angle glaucoma DISDR98A Strong Genetic Variation [15]
Osteosarcoma DISLQ7E2 Strong Biomarker [5]
Primary congenital glaucoma DISY7HN4 Strong Genetic Variation [16]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [17]
Uterine fibroids DISBZRMJ Strong Biomarker [11]
Weill-Marchesani 4 syndrome, recessive DISCL3SY Strong Genetic Variation [14]
Meningioma DISPT4TG moderate Biomarker [18]
Nasopharyngeal carcinoma DISAOTQ0 moderate Biomarker [19]
Pulmonary emphysema DIS5M7HZ moderate Biomarker [20]
Weill-Marchesani syndrome 3 DIS8RZZI Moderate Autosomal recessive [21]
Congenital glaucoma DISHN3GO Supportive Autosomal dominant [22]
Glaucoma secondary to spherophakia/ectopia lentis and megalocornea DISW4Q6R Supportive Autosomal recessive [23]
Weill-Marchesani syndrome DIS9B7CX Supportive Autosomal dominant [24]
Megalocornea DISIMNF0 Disputed Genetic Variation [25]
Advanced cancer DISAT1Z9 Limited Biomarker [26]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [27]
Gastric cancer DISXGOUK Limited Biomarker [28]
Glaucoma/ocular hypertension DISLBXBY Limited Genetic Variation [14]
Malignant mesothelioma DISTHJGH Limited Altered Expression [29]
Marfan syndrome DISVEUWZ Limited Biomarker [10]
Matthew-Wood syndrome DISA7HR7 Limited Altered Expression [26]
Mesothelioma DISKWK9M Limited Altered Expression [29]
Pancreatic cancer DISJC981 Limited Biomarker [26]
Pancreatic ductal carcinoma DIS26F9Q Limited Altered Expression [26]
Stomach cancer DISKIJSX Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Latent-transforming growth factor beta-binding protein 2 (LTBP2) affects the response to substance of Paclitaxel. [47]
Mitomycin DMH0ZJE Approved Latent-transforming growth factor beta-binding protein 2 (LTBP2) affects the response to substance of Mitomycin. [47]
Topotecan DMP6G8T Approved Latent-transforming growth factor beta-binding protein 2 (LTBP2) affects the response to substance of Topotecan. [47]
Vinblastine DM5TVS3 Approved Latent-transforming growth factor beta-binding protein 2 (LTBP2) affects the response to substance of Vinblastine. [47]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [30]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [33]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [41]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [43]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [31]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [32]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [34]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [35]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [36]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [37]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [38]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [39]
Seocalcitol DMKL9QO Phase 3 Seocalcitol increases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [40]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [42]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [44]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [45]
Forskolin DM6ITNG Investigative Forskolin decreases the expression of Latent-transforming growth factor beta-binding protein 2 (LTBP2). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet. 2009 Oct 15;18(20):3969-77. doi: 10.1093/hmg/ddp338. Epub 2009 Aug 4.
3 Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease.Nat Genet. 2011 May;43(5):436-41. doi: 10.1038/ng.801. Epub 2011 Apr 3.
4 Expression and clinical significance of latent-transforming growth factor beta-binding protein 2 in primary hepatocellular carcinoma.Medicine (Baltimore). 2019 Sep;98(39):e17216. doi: 10.1097/MD.0000000000017216.
5 miR-421 promotes apoptosis and suppresses metastasis of osteosarcoma cells via targeting LTBP2.J Cell Biochem. 2019 Jul;120(7):10978-10987. doi: 10.1002/jcb.28144. Epub 2019 Mar 28.
6 LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during dilated cardiomyopathy.Acta Physiol (Oxf). 2020 Mar;228(3):e13377. doi: 10.1111/apha.13377. Epub 2019 Nov 6.
7 Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis.Circulation. 2018 Sep 18;138(12):1224-1235. doi: 10.1161/CIRCULATIONAHA.118.035420.
8 The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome.Int J Cancer. 2011 Aug 1;129(3):565-73. doi: 10.1002/ijc.25698. Epub 2010 Nov 9.
9 Genetic variations in humans associated with differences in the course of hepatitis C.Biochem Biophys Res Commun. 2004 Apr 30;317(2):335-41. doi: 10.1016/j.bbrc.2004.03.056.
10 LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix. Hum Mutat. 2012 Aug;33(8):1182-7. doi: 10.1002/humu.22105. Epub 2012 May 29.
11 Identification of genes with higher expression in human uterine leiomyomas than in the corresponding myometrium.Mol Hum Reprod. 2002 Mar;8(3):246-54. doi: 10.1093/molehr/8.3.246.
12 Latent transforming growth factor-beta-binding protein 2 is an adhesion protein for melanoma cells.J Biol Chem. 2003 Jul 4;278(27):24705-13. doi: 10.1074/jbc.M212953200. Epub 2003 Apr 25.
13 Association of a polymorphism of BTN2A1 with myocardial infarction in East Asian populations.Atherosclerosis. 2011 Mar;215(1):145-52. doi: 10.1016/j.atherosclerosis.2010.12.005. Epub 2010 Dec 15.
14 Delineation of Novel Compound Heterozygous Variants in LTBP2 Associated with Juvenile Open Angle Glaucoma.Genes (Basel). 2018 Oct 30;9(11):527. doi: 10.3390/genes9110527.
15 Contribution of the latent transforming growth factor- binding protein 2 gene to etiology of primary open angle glaucoma and pseudoexfoliation syndrome.Mol Vis. 2013;19:333-47. Epub 2013 Feb 7.
16 Candidate Gene Analysis Identifies Mutations in CYP1B1 and LTBP2 in Indian Families with Primary Congenital Glaucoma.Genet Test Mol Biomarkers. 2017 Apr;21(4):252-258. doi: 10.1089/gtmb.2016.0203. Epub 2017 Feb 27.
17 Knockdown of Latent Transforming Growth Factor- (TGF-)-Binding Protein 2 (LTBP2) Inhibits Invasion and Tumorigenesis in Thyroid Carcinoma Cells.Oncol Res. 2017 Apr 14;25(4):503-510. doi: 10.3727/096504016X14755368915591. Epub 2016 Oct 5.
18 Genetic alterations associated with progression and recurrence in meningiomas.J Neuropathol Exp Neurol. 2012 Oct;71(10):882-93. doi: 10.1097/NEN.0b013e31826bf704.
19 LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth factor permissive microenvironment in nasopharyngeal carcinoma.Cancer Lett. 2012 Dec 1;325(1):89-98. doi: 10.1016/j.canlet.2012.06.005. Epub 2012 Jun 26.
20 Latent TGF- binding protein 2 and 4 have essential overlapping functions in microfibril development.Sci Rep. 2017 Mar 2;7:43714. doi: 10.1038/srep43714.
21 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
22 Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 2009 May;84(5):664-71. doi: 10.1016/j.ajhg.2009.03.017. Epub 2009 Apr 9.
23 LTBP2 null mutations in an autosomal recessive ocular syndrome with megalocornea, spherophakia, and secondary glaucoma. Eur J Hum Genet. 2010 Jul;18(7):761-7. doi: 10.1038/ejhg.2010.11. Epub 2010 Feb 24.
24 Weill-Marchesani Syndrome. 2007 Nov 1 [updated 2020 Dec 10]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
25 LTBP2-related "Marfan-like" phenotype in two Roma/Gypsy subjects with the LTBP2 homozygous p.R299X variant.Am J Med Genet A. 2019 Jan;179(1):104-112. doi: 10.1002/ajmg.a.10. Epub 2018 Dec 18.
26 Latent Transforming Growth Factor Binding Protein 2 (LTBP2) as a Novel Biomarker for the Diagnosis and Prognosis of Pancreatic Carcinoma.Med Sci Monit. 2017 Jul 3;23:3232-3239. doi: 10.12659/msm.905284.
27 High Expression of LTBP2 Contributes to Poor Prognosis in Colorectal Cancer Patients and Correlates with the Mesenchymal Colorectal Cancer Subtype.Dis Markers. 2019 Mar 10;2019:5231269. doi: 10.1155/2019/5231269. eCollection 2019.
28 LTBP2 promotes the migration and invasion of gastric cancer cells and predicts poor outcome of patients with gastric cancer.Int J Oncol. 2018 Jun;52(6):1886-1898. doi: 10.3892/ijo.2018.4356. Epub 2018 Apr 4.
29 Latent TGF- binding proteins (LTBPs) 1 and 3 differentially regulate transforming growth factor- activity in malignant mesothelioma.Hum Pathol. 2011 Feb;42(2):269-78. doi: 10.1016/j.humpath.2010.07.005. Epub 2010 Nov 24.
30 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
31 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
32 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
33 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
34 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
35 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
36 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
37 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
38 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
39 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
40 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
41 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
42 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
43 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
44 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
45 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
46 Drug development for ovarian hyper-stimulation and anti-cancer treatment: blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis. Biochem Pharmacol. 2004 Sep 15;68(6):989-96. doi: 10.1016/j.bcp.2004.05.027.
47 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.