General Information of Drug Off-Target (DOT) (ID: OTTD6HMV)

DOT Name Homeobox protein Hox-B2 (HOXB2)
Synonyms Homeobox protein Hox-2.8; Homeobox protein Hox-2H; K8
Gene Name HOXB2
Related Disease
Bone osteosarcoma ( )
Lung cancer ( )
Lung carcinoma ( )
Non-small-cell lung cancer ( )
Osteosarcoma ( )
Acute lymphocytic leukaemia ( )
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
Adult glioblastoma ( )
Atrichia with papular lesions ( )
Breast cancer ( )
Breast carcinoma ( )
Campomelic dysplasia ( )
Cervical cancer ( )
Cervical carcinoma ( )
Esophageal squamous cell carcinoma ( )
Glioblastoma multiforme ( )
leukaemia ( )
Leukemia ( )
Lung adenocarcinoma ( )
Neuroblastoma ( )
Pancreatic cancer ( )
Promyelocytic leukaemia ( )
Renal carcinoma ( )
Renal cell carcinoma ( )
Rheumatoid arthritis ( )
Bladder cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Neoplasm ( )
UniProt ID
HXB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00046
Sequence
MNFEFEREIGFINSQPSLAECLTSFPAVLETFQTSSIKESTLIPPPPPFEQTFPSLQPGA
STLQRPRSQKRAEDGPALPPPPPPPLPAAPPAPEFPWMKEKKSAKKPSQSATSPSPAASA
VPASGVGSPADGLGLPEAGGGGARRLRTAYTNTQLLELEKEFHFNKYLCRPRRVEIAALL
DLTERQVKVWFQNRRMKHKRQTQHREPPDGEPACPGALEDICDPAEEPAASPGGPSASRA
AWEACCHPPEVVPGALSADPRPLAVRLEGAGASSPGCALRGAGGLEPGPLPEDVFSGRQD
SPFLPDLNFFAADSCLQLSGGLSPSLQGSLDSPVPFSEEELDFFTSTLCAIDLQFP
Function Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis.
Reactome Pathway
Activation of anterior HOX genes in hindbrain development during early embryogenesis (R-HSA-5617472 )

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bone osteosarcoma DIST1004 Definitive Biomarker [1]
Lung cancer DISCM4YA Definitive Genetic Variation [2]
Lung carcinoma DISTR26C Definitive Genetic Variation [2]
Non-small-cell lung cancer DIS5Y6R9 Definitive Biomarker [3]
Osteosarcoma DISLQ7E2 Definitive Biomarker [1]
Acute lymphocytic leukaemia DISPX75S Strong Biomarker [4]
Acute monocytic leukemia DIS28NEL Strong Altered Expression [5]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [6]
Adult glioblastoma DISVP4LU Strong Biomarker [7]
Atrichia with papular lesions DIS80CUB Strong Altered Expression [8]
Breast cancer DIS7DPX1 Strong Biomarker [9]
Breast carcinoma DIS2UE88 Strong Biomarker [9]
Campomelic dysplasia DISVTW53 Strong Biomarker [10]
Cervical cancer DISFSHPF Strong Altered Expression [11]
Cervical carcinoma DIST4S00 Strong Altered Expression [11]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [12]
Glioblastoma multiforme DISK8246 Strong Biomarker [7]
leukaemia DISS7D1V Strong Altered Expression [4]
Leukemia DISNAKFL Strong Altered Expression [4]
Lung adenocarcinoma DISD51WR Strong Biomarker [3]
Neuroblastoma DISVZBI4 Strong Altered Expression [13]
Pancreatic cancer DISJC981 Strong Altered Expression [14]
Promyelocytic leukaemia DISYGG13 Strong Altered Expression [8]
Renal carcinoma DISER9XT Strong Genetic Variation [15]
Renal cell carcinoma DISQZ2X8 Strong Genetic Variation [15]
Rheumatoid arthritis DISTSB4J Strong Biomarker [14]
Bladder cancer DISUHNM0 moderate Biomarker [16]
Urinary bladder cancer DISDV4T7 moderate Biomarker [16]
Urinary bladder neoplasm DIS7HACE moderate Biomarker [16]
Neoplasm DISZKGEW Limited Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Topotecan DMP6G8T Approved Homeobox protein Hox-B2 (HOXB2) affects the response to substance of Topotecan. [27]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Homeobox protein Hox-B2 (HOXB2). [17]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Homeobox protein Hox-B2 (HOXB2). [18]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Homeobox protein Hox-B2 (HOXB2). [19]
Triclosan DMZUR4N Approved Triclosan increases the expression of Homeobox protein Hox-B2 (HOXB2). [20]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Homeobox protein Hox-B2 (HOXB2). [21]
Gemcitabine DMSE3I7 Approved Gemcitabine increases the expression of Homeobox protein Hox-B2 (HOXB2). [22]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Homeobox protein Hox-B2 (HOXB2). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Homeobox protein Hox-B2 (HOXB2). [24]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Homeobox protein Hox-B2 (HOXB2). [25]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Homeobox protein Hox-B2 (HOXB2). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2.Cell Cycle. 2019 Jun;18(11):1281-1291. doi: 10.1080/15384101.2019.1618127. Epub 2019 May 22.
2 Lung cancer susceptibility genetic variants modulate HOXB2 expression in the lung.Int J Dev Biol. 2018;62(11-12):857-864. doi: 10.1387/ijdb.180210yb.
3 HOXB2, an adverse prognostic indicator for stage I lung adenocarcinomas, promotes invasion by transcriptional regulation of metastasis-related genes in HOP-62 non-small cell lung cancer cells.Anticancer Res. 2008 Jul-Aug;28(4B):2121-7.
4 Expression of selected human HOX-2 genes in B/T acute lymphoid leukemia and interleukin-2/interleukin-1 beta-stimulated natural killer lymphocytes.Blood. 1992 Jul 1;80(1):185-93.
5 Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias.Leukemia. 2007 Sep;21(9):2000-9. doi: 10.1038/sj.leu.2404808. Epub 2007 Jun 28.
6 The role of HOXB2 and HOXB3 in acute myeloid leukemia.Biochem Biophys Res Commun. 2015 Nov 27;467(4):742-7. doi: 10.1016/j.bbrc.2015.10.071. Epub 2015 Oct 22.
7 Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/miR-885-3p/HOXB2 axis.Neoplasma. 2019 May 23;66(3):386-396. doi: 10.4149/neo_2018_180606N377.
8 Regulation of Hoxb2 by APL-associated PLZF protein.Oncogene. 2003 Jun 12;22(24):3685-97. doi: 10.1038/sj.onc.1206328.
9 A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer.Genomics. 2011 Sep;98(3):164-72. doi: 10.1016/j.ygeno.2011.05.011. Epub 2011 Jun 13.
10 Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1.Nat Genet. 1993 Jun;4(2):170-4. doi: 10.1038/ng0693-170.
11 Increased expression of HOXB2 and HOXB13 proteins is associated with HPV infection and cervical cancer progression.Asian Pac J Cancer Prev. 2015;16(4):1349-53. doi: 10.7314/apjcp.2015.16.4.1349.
12 Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma.Oncotarget. 2017 Jun 6;8(23):37740-37750. doi: 10.18632/oncotarget.17147.
13 Modulation of HOX2 gene expression following differentiation of neuronal cell lines.Differentiation. 1992 Sep;51(1):39-47. doi: 10.1111/j.1432-0436.1992.tb00678.x.
14 Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia.Clin Cancer Res. 2005 May 1;11(9):3587-96. doi: 10.1158/1078-0432.CCR-04-1813.
15 HOX gene expression in normal and neoplastic human kidney.Int J Cancer. 1992 Jul 30;51(6):892-7. doi: 10.1002/ijc.2910510610.
16 HOXB2 is a Putative Tumour Promotor in Human Bladder Cancer.Anticancer Res. 2019 Dec;39(12):6915-6921. doi: 10.21873/anticanres.13912.
17 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
18 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
19 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
20 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
21 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
22 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
23 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
24 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
27 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.