General Information of Drug Off-Target (DOT) (ID: OTWXELQP)

DOT Name Eukaryotic translation initiation factor 2A (EIF2A)
Synonyms eIF-2A; 65 kDa eukaryotic translation initiation factor 2A
Gene Name EIF2A
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Crohn disease ( )
Epilepsy ( )
Inflammatory bowel disease ( )
Intellectual disability ( )
Myocardial ischemia ( )
Plasma cell myeloma ( )
Hepatitis C virus infection ( )
Tauopathy ( )
UniProt ID
EIF2A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8DYS
Pfam ID
PF08662
Sequence
MAPSTPLLTVRGSEGLYMVNGPPHFTESTVFPRESGKNCKVCIFSKDGTLFAWGNGEKVN
IISVTNKGLLHSFDLLKAVCLEFSPKNTVLATWQPYTTSKDGTAGIPNLQLYDVKTGTCL
KSFIQKKMQNWCPSWSEDETLCARNVNNEVHFFENNNFNTIANKLHLQKINDFVLSPGPQ
PYKVAVYVPGSKGAPSFVRLYQYPNFAGPHAALANKSFFKADKVTMLWNKKATAVLVIAS
TDVDKTGASYYGEQTLHYIATNGESAVVQLPKNGPIYDVVWNSSSTEFCAVYGFMPAKAT
IFNLKCDPVFDFGTGPRNAAYYSPHGHILVLAGFGNLRGQMEVWDVKNYKLISKPVASDS
TYFAWCPDGEHILTATCAPRLRVNNGYKIWHYTGSILHKYDVPSNAELWQVSWQPFLDGI
FPAKTITYQAVPSEVPNEEPKVATAYRPPALRNKPITNSKLHEEEPPQNMKPQSGNDKPL
SKTALKNQRKHEAKKAAKQEARSDKSPDLAPTPAPQSTPRNTVSQSISGDPEIDKKIKNL
KKKLKAIEQLKEQAATGKQLEKNQLEKIQKETALLQELEDLELGI
Function
Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner.
Tissue Specificity Widely expressed. Expressed at higher level in pancreas, heart, brain and placenta.

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Crohn disease DIS2C5Q8 Strong Altered Expression [2]
Epilepsy DISBB28L Strong Biomarker [3]
Inflammatory bowel disease DISGN23E Strong Posttranslational Modification [4]
Intellectual disability DISMBNXP Strong Biomarker [3]
Myocardial ischemia DISFTVXF Strong Biomarker [5]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [6]
Hepatitis C virus infection DISQ0M8R Limited Biomarker [7]
Tauopathy DISY2IPA Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
26 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Eukaryotic translation initiation factor 2A (EIF2A). [9]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [15]
Vorinostat DMWMPD4 Approved Vorinostat increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [17]
Bortezomib DMNO38U Approved Bortezomib decreases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [20]
Capsaicin DMGMF6V Approved Capsaicin increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [21]
Sorafenib DMS8IFC Approved Sorafenib increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [23]
Orlistat DMRJSP8 Approved Orlistat increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [25]
Clotrimazole DMMFCIH Approved Clotrimazole increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [26]
Nelfinavir mesylate DMFX6G8 Approved Nelfinavir mesylate increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [27]
Niflumic acid DMJ3I1Q Approved Niflumic acid increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [28]
Bepridil DM0RKS4 Approved Bepridil increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [29]
Nitazoxanide DMOWLVG Approved Nitazoxanide increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [30]
Cerulenin DM6N4PR Approved Cerulenin increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [31]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [26]
Cibenzoline DMBG0N4 Phase 4 Cibenzoline increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [29]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [32]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [29]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [34]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [15]
Ciglitazone DMAPO0T Preclinical Ciglitazone increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [28]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [38]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [15]
Paraquat DMR8O3X Investigative Paraquat increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [41]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [5]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [44]
Borrelidin DMBSQTR Investigative Borrelidin increases the phosphorylation of Eukaryotic translation initiation factor 2A (EIF2A). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Drug(s)
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [10]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [11]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [12]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [13]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [14]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [16]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Eukaryotic translation initiation factor 2A (EIF2A). [18]
Marinol DM70IK5 Approved Marinol increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [19]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Eukaryotic translation initiation factor 2A (EIF2A). [18]
Acocantherin DM7JT24 Approved Acocantherin increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [22]
Nefazodone DM4ZS8M Approved Nefazodone increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [24]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Eukaryotic translation initiation factor 2A (EIF2A). [11]
Psoralen DMIZJ8M Phase 3 Psoralen increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [33]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [35]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [37]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [39]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [40]
Manganese DMKT129 Investigative Manganese increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [43]
L-Serine DM6WPIS Investigative L-Serine increases the expression of Eukaryotic translation initiation factor 2A (EIF2A). [45]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 EIF2A promotes cell survival during paclitaxel treatment in vitro and in vivo.J Cell Mol Med. 2019 Sep;23(9):6060-6071. doi: 10.1111/jcmm.14469. Epub 2019 Jun 18.
2 Villin-1 and Gelsolin Regulate Changes in Actin Dynamics That Affect Cell Survival Signaling Pathways and Intestinal Inflammation.Gastroenterology. 2018 Apr;154(5):1405-1420.e2. doi: 10.1053/j.gastro.2017.12.016. Epub 2017 Dec 21.
3 Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population.Am J Hum Genet. 2019 Jun 6;104(6):1182-1201. doi: 10.1016/j.ajhg.2019.04.011. Epub 2019 May 23.
4 Involvement of endoplasmic reticulum stress in inflammatory bowel disease: a different implication for colonic and ileal disease?.PLoS One. 2011;6(10):e25589. doi: 10.1371/journal.pone.0025589. Epub 2011 Oct 18.
5 Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chem Biol Interact. 2009 Mar 16;178(1-3):242-9. doi: 10.1016/j.cbi.2008.10.055. Epub 2008 Nov 11.
6 Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy.Cancer Res. 2009 Feb 15;69(4):1545-52. doi: 10.1158/0008-5472.CAN-08-3858. Epub 2009 Feb 3.
7 The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by Hepatitis C Virus IRES in Human Cells.Front Microbiol. 2018 Feb 13;9:207. doi: 10.3389/fmicb.2018.00207. eCollection 2018.
8 PERK activation mitigates tau pathology invitro and invivo.EMBO Mol Med. 2017 Mar;9(3):371-384. doi: 10.15252/emmm.201606664.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
12 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
13 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
14 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 [Mechanism of arsenic trioxide induced apoptosis in cultured human lens epithelium cells]. Zhonghua Yan Ke Za Zhi. 2008 Oct;44(10):916-20.
17 Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol. 2009 Nov;64(6):1115-22. doi: 10.1007/s00280-009-0969-x. Epub 2009 Mar 11.
18 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
19 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
20 Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood. 2008 Oct 1;112(7):2917-26. doi: 10.1182/blood-2007-12-130823. Epub 2008 Jul 18.
21 Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun. 2008 Aug 8;372(4):785-91.
22 Ouabain induces apoptotic cell death in human prostate DU 145 cancer cells through DNA damage and TRAIL pathways. Environ Toxicol. 2019 Dec;34(12):1329-1339. doi: 10.1002/tox.22834. Epub 2019 Aug 21.
23 The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007 Aug;27(15):5499-513. doi: 10.1128/MCB.01080-06. Epub 2007 Jun 4.
24 Endoplasmic Reticulum Stress Induction and ERK1/2 Activation Contribute to Nefazodone-Induced Toxicity in Hepatic Cells. Toxicol Sci. 2016 Dec;154(2):368-380. doi: 10.1093/toxsci/kfw173. Epub 2016 Sep 9.
25 Click-based synthesis and proteomic profiling of lipstatin analogues. Chem Commun (Camb). 2010 Nov 28;46(44):8335-7. doi: 10.1039/c0cc01276a. Epub 2010 Jun 24.
26 Androgen signaling promotes translation of TMEFF2 in prostate cancer cells via phosphorylation of the subunit of the translation initiation factor 2. PLoS One. 2013;8(2):e55257. doi: 10.1371/journal.pone.0055257. Epub 2013 Feb 6.
27 Nelfinavir induces the unfolded protein response in ovarian cancer cells, resulting in ER vacuolization, cell cycle retardation and apoptosis. Cancer Biol Ther. 2009 Feb;8(3):226-32. doi: 10.4161/cbt.8.3.7339. Epub 2009 Feb 3.
28 Combined treatment with the Cox-2 inhibitor niflumic acid and PPARgama ligand ciglitazone induces ER stress/caspase-8-mediated apoptosis in human lung cancer cells. Cancer Lett. 2011 Jan 28;300(2):134-44.
29 Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation. Neuro Oncol. 2011 Mar;13(3):267-79. doi: 10.1093/neuonc/noq195. Epub 2011 Feb 3.
30 The anti-hepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2alpha via protein kinase activated by double-stranded RNA activation. Gastroenterology. 2009 Nov;137(5):1827-35. doi: 10.1053/j.gastro.2009.07.056. Epub 2009 Aug 4.
31 Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells. Cancer Res. 2007 Feb 1;67(3):1262-9. doi: 10.1158/0008-5472.CAN-06-1794.
32 Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br J Cancer. 2007 Apr 10;96(7):1062-71. doi: 10.1038/sj.bjc.6603672. Epub 2007 Mar 13.
33 Psoralen induces hepatic toxicity through PERK and ATF6 related ER stress pathways in HepG2 cells. Toxicol Mech Methods. 2020 Jan;30(1):39-47. doi: 10.1080/15376516.2019.1650150. Epub 2019 Aug 20.
34 Role of endoplasmic reticulum stress in alpha-TEA mediated TRAIL/DR5 death receptor dependent apoptosis. PLoS One. 2010 Jul 29;5(7):e11865. doi: 10.1371/journal.pone.0011865.
35 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
36 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
37 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
38 The ER stress-mediated decrease in DDAH1 expression is involved in formaldehyde-induced apoptosis in lung epithelial cells. Food Chem Toxicol. 2013 Dec;62:763-9. doi: 10.1016/j.fct.2013.10.014. Epub 2013 Oct 16.
39 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
40 Ochratoxin A induces cytotoxicity through ROS-mediated endoplasmic reticulum stress pathway in human gastric epithelium cells. Toxicology. 2022 Sep;479:153309. doi: 10.1016/j.tox.2022.153309. Epub 2022 Sep 1.
41 ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicol Sci. 2011 Jan;119(1):156-68. doi: 10.1093/toxsci/kfq313. Epub 2010 Oct 7.
42 Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chem Biol Interact. 2009 Mar 16;178(1-3):242-9. doi: 10.1016/j.cbi.2008.10.055. Epub 2008 Nov 11.
43 The effects of 3, 4 or 5 amino salicylic acids on manganese-induced neuronal death: ER stress and mitochondrial complexes. Toxicol In Vitro. 2011 Oct;25(7):1259-68. doi: 10.1016/j.tiv.2011.04.002. Epub 2011 Apr 6.
44 Involvement of the Nrf2 pathway in the regulation of pterostilbene-induced apoptosis in HeLa cells via ER stress. J Pharmacol Sci. 2014;126(3):216-29.
45 Mechanisms of L-Serine Neuroprotection in vitro Include ER Proteostasis Regulation. Neurotox Res. 2018 Jan;33(1):123-132. doi: 10.1007/s12640-017-9829-3. Epub 2017 Nov 2.
46 Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor. Sci Rep. 2015 Aug 14;5:13160. doi: 10.1038/srep13160.