General Information of Drug Off-Target (DOT) (ID: OT375W1Z)

DOT Name Very long chain fatty acid elongase 5 (ELOVL5)
Synonyms
EC 2.3.1.199; 3-keto acyl-CoA synthase ELOVL5; ELOVL fatty acid elongase 5; ELOVL FA elongase 5; Elongation of very long chain fatty acids protein 5; Fatty acid elongase 1; hELO1; Very long chain 3-ketoacyl-CoA synthase 5; Very long chain 3-oxoacyl-CoA synthase 5
Gene Name ELOVL5
Related Disease
Nephropathy ( )
Non-insulin dependent diabetes ( )
Adenocarcinoma ( )
Advanced cancer ( )
Cardiac arrest ( )
Cerebellar ataxia ( )
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Fatty liver disease ( )
Major depressive disorder ( )
Obesity ( )
Prostate cancer ( )
Prostate carcinoma ( )
Retinitis pigmentosa 25 ( )
Spinocerebellar ataxia type 38 ( )
Triple negative breast cancer ( )
Hyperglycemia ( )
OPTN-related open angle glaucoma ( )
Type-1/2 diabetes ( )
UniProt ID
ELOV5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.1.199
Pfam ID
PF01151
Sequence
MEHFDASLSTYFKALLGPRDTRVKGWFLLDNYIPTFICSVIYLLIVWLGPKYMRNKQPFS
CRGILVVYNLGLTLLSLYMFCELVTGVWEGKYNFFCQGTRTAGESDMKIIRVLWWYYFSK
LIEFMDTFFFILRKNNHQITVLHVYHHASMLNIWWFVMNWVPCGHSYFGATLNSFIHVLM
YSYYGLSSVPSMRPYLWWKKYITQGQLLQFVLTIIQTSCGVIWPCTFPLGWLYFQIGYMI
SLIALFTNFYIQTYNKKGASRRKDHLKDHQNGSMAAVNGHTNSFSPLENNVKPRKLRKD
Function
Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that acts specifically toward polyunsaturated acyl-CoA with the higher activity toward C18:3(n-6) acyl-CoA. May participate in the production of monounsaturated and of polyunsaturated VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. In conditions where the essential linoleic and alpha linoleic fatty acids are lacking it is also involved in the synthesis of Mead acid from oleic acid.
Tissue Specificity Ubiquitous. Highly expressed in the adrenal gland and testis. Weakly expressed in prostate, lung and brain. Expressed in the cerebellum.
KEGG Pathway
Fatty acid elongation (hsa00062 )
Biosynthesis of unsaturated fatty acids (hsa01040 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
Reactome Pathway
alpha-linolenic acid (ALA) metabolism (R-HSA-2046106 )
Synthesis of very long-chain fatty acyl-CoAs (R-HSA-75876 )
Linoleic acid (LA) metabolism (R-HSA-2046105 )
BioCyc Pathway
MetaCyc:ENSG00000012660-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

25 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Nephropathy DISXWP4P Definitive Posttranslational Modification [1]
Non-insulin dependent diabetes DISK1O5Z Definitive Biomarker [2]
Adenocarcinoma DIS3IHTY Strong Altered Expression [3]
Advanced cancer DISAT1Z9 Strong Altered Expression [3]
Cardiac arrest DIS9DIA4 Strong Genetic Variation [4]
Cerebellar ataxia DIS9IRAV Strong Altered Expression [5]
Colon cancer DISVC52G Strong Genetic Variation [6]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [6]
Colorectal cancer DISNH7P9 Strong Genetic Variation [6]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [6]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [6]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [6]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [6]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [6]
Fatty liver disease DIS485QZ Strong Altered Expression [7]
Major depressive disorder DIS4CL3X Strong Altered Expression [8]
Obesity DIS47Y1K Strong Altered Expression [7]
Prostate cancer DISF190Y Strong Biomarker [9]
Prostate carcinoma DISMJPLE Strong Biomarker [9]
Retinitis pigmentosa 25 DISTIKZB Strong Biomarker [10]
Spinocerebellar ataxia type 38 DISUC2CF Strong Autosomal dominant [11]
Triple negative breast cancer DISAMG6N Strong Biomarker [12]
Hyperglycemia DIS0BZB5 Limited Altered Expression [13]
OPTN-related open angle glaucoma DISDR98A Limited Genetic Variation [14]
Type-1/2 diabetes DISIUHAP Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Very long chain fatty acid elongase 5 (ELOVL5) affects the response to substance of Fluorouracil. [35]
Mitoxantrone DMM39BF Approved Very long chain fatty acid elongase 5 (ELOVL5) affects the response to substance of Mitoxantrone. [36]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Very long chain fatty acid elongase 5 (ELOVL5). [16]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [17]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [18]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [19]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [20]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [21]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [22]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [20]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [23]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [24]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [25]
Aspirin DM672AH Approved Aspirin decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [26]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [27]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [28]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [31]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [32]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [33]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Very long chain fatty acid elongase 5 (ELOVL5). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Very long chain fatty acid elongase 5 (ELOVL5). [30]
------------------------------------------------------------------------------------

References

1 Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells.PLoS One. 2014 Oct 17;9(10):e109896. doi: 10.1371/journal.pone.0109896. eCollection 2014.
2 Genome-wide methylation analysis identifies ELOVL5 as an epigenetic biomarker for the risk of type 2 diabetes mellitus.Sci Rep. 2018 Oct 5;8(1):14862. doi: 10.1038/s41598-018-33238-9.
3 The Expression of HSD17B12 Is Associated with COX-2 Expression and Is Increased in High-Grade Epithelial Ovarian Cancer.Oncology. 2018;94(4):233-242. doi: 10.1159/000485624. Epub 2018 Jan 12.
4 SCA38 is rare in Mainland China.J Neurol Sci. 2015 Nov 15;358(1-2):333-4. doi: 10.1016/j.jns.2015.09.350. Epub 2015 Sep 15.
5 Clinical and Functional Characterization of a Missense ELF2 Variant in a CANVAS Family.Front Genet. 2018 Mar 23;9:85. doi: 10.3389/fgene.2018.00085. eCollection 2018.
6 Common genetic variation and survival after colorectal cancer diagnosis: a genome-wide analysis.Carcinogenesis. 2016 Jan;37(1):87-95. doi: 10.1093/carcin/bgv161. Epub 2015 Nov 19.
7 Fatty acid elongase-5 (Elovl5) regulates hepatic triglyceride catabolism in obese C57BL/6J mice.J Lipid Res. 2014 Jul;55(7):1448-64. doi: 10.1194/jlr.M050062. Epub 2014 May 9.
8 Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder.J Affect Disord. 2011 Mar;129(1-3):359-63. doi: 10.1016/j.jad.2010.08.021. Epub 2010 Sep 21.
9 Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles.ACS Appl Mater Interfaces. 2019 Jul 3;11(26):22993-23005. doi: 10.1021/acsami.9b05577. Epub 2019 Jun 24.
10 Mutation screening of three candidate genes, ELOVL5, SMAP1 and GLULD1 in autosomal recessive retinitis pigmentosa.Int J Mol Med. 2005 Dec;16(6):1163-7.
11 Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res. 2009 Mar;50(3):412-423. doi: 10.1194/jlr.M800383-JLR200. Epub 2008 Oct 6.
12 Differences in elongation of very long chain fatty acids and fatty acid metabolism between triple-negative and hormone receptor-positive breast cancer.BMC Cancer. 2017 Aug 29;17(1):589. doi: 10.1186/s12885-017-3554-4.
13 Elevated hepatic fatty acid elongase-5 activity corrects dietary fat-induced hyperglycemia in obese C57BL/6J mice.J Lipid Res. 2010 Sep;51(9):2642-54. doi: 10.1194/jlr.M006080. Epub 2010 May 19.
14 Association between SRBD1 and ELOVL5 gene polymorphisms and primary open-angle glaucoma.Invest Ophthalmol Vis Sci. 2011 Jun 28;52(7):4626-9. doi: 10.1167/iovs.11-7382.
15 Identification of Shared and Unique Serum Lipid Profiles in Diabetes Mellitus and Myocardial Infarction.J Am Heart Assoc. 2016 Nov 29;5(12):e004503. doi: 10.1161/JAHA.116.004503.
16 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
19 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
20 Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell Biochem. 2006 Aug 1;98(5):1163-84.
21 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
22 Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol. 2009 Feb;46(4):649-56.
23 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
24 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
25 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
26 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
27 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
28 Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol Carcinog. 2004 Oct;41(2):108-119.
29 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
30 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
31 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
32 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
33 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
34 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.
35 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
36 Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene. 2005 Nov 17;24(51):7542-51. doi: 10.1038/sj.onc.1208908.