General Information of Drug Off-Target (DOT) (ID: OTESDI4D)

DOT Name Glutamate--cysteine ligase catalytic subunit (GCLC)
Synonyms EC 6.3.2.2; GCS heavy chain; Gamma-ECS; Gamma-glutamylcysteine synthetase
Gene Name GCLC
Related Disease
Gamma-glutamylcysteine synthetase deficiency ( )
UniProt ID
GSH1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
6.3.2.2
Pfam ID
PF03074
Sequence
MGLLSQGSPLSWEETKRHADHVRRHGILQFLHIYHAVKDRHKDVLKWGDEVEYMLVSFDH
ENKKVRLVLSGEKVLETLQEKGERTNPNHPTLWRPEYGSYMIEGTPGQPYGGTMSEFNTV
EANMRKRRKEATSILEENQALCTITSFPRLGCPGFTLPEVKPNPVEGGASKSLFFPDEAI
NKHPRFSTLTRNIRHRRGEKVVINVPIFKDKNTPSPFIETFTEDDEASRASKPDHIYMDA
MGFGMGNCCLQVTFQACSISEARYLYDQLATICPIVMALSAASPFYRGYVSDIDCRWGVI
SASVDDRTREERGLEPLKNNNYRISKSRYDSIDSYLSKCGEKYNDIDLTIDKEIYEQLLQ
EGIDHLLAQHVAHLFIRDPLTLFEEKIHLDDANESDHFENIQSTNWQTMRFKPPPPNSDI
GWRVEFRPMEVQLTDFENSAYVVFVVLLTRVILSYKLDFLIPLSKVDENMKVAQKRDAVL
QGMFYFRKDICKGGNAVVDGCGKAQNSTELAAEEYTLMSIDTIINGKEGVFPGLIPILNS
YLENMEVDVDTRCSILNYLKLIKKRASGELMTVARWMREFIANHPDYKQDSVITDEMNYS
LILKCNQIANELCECPELLGSAFRKVKYSGSKTDSSN
Function Catalyzes the ATP-dependent ligation of L-glutamate and L-cysteine and participates in the first and rate-limiting step in glutathione biosynthesis.
KEGG Pathway
Cysteine and methionine metabolism (hsa00270 )
Glutathione metabolism (hsa00480 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Ferroptosis (hsa04216 )
Reactome Pathway
Defective GCLC causes HAGGSD (R-HSA-5578999 )
NFE2L2 regulating anti-oxidant/detoxification enzymes (R-HSA-9818027 )
Glutathione synthesis and recycling (R-HSA-174403 )
BioCyc Pathway
MetaCyc:ENSG00000001084-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Gamma-glutamylcysteine synthetase deficiency DISFREPH Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Glutamate--cysteine ligase catalytic subunit (GCLC) decreases the response to substance of Doxorubicin. [73]
Gefitinib DM15F0X Approved Glutamate--cysteine ligase catalytic subunit (GCLC) affects the response to substance of Gefitinib. [74]
Artesunate DMR27C8 Approved Glutamate--cysteine ligase catalytic subunit (GCLC) decreases the response to substance of Artesunate. [75]
Acetylcholine DMDF79Z Approved Glutamate--cysteine ligase catalytic subunit (GCLC) decreases the response to substance of Acetylcholine. [77]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Glutathione DMAHMT9 Approved Glutamate--cysteine ligase catalytic subunit (GCLC) increases the abundance of Glutathione. [76]
------------------------------------------------------------------------------------
97 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [8]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [13]
Menadione DMSJDTY Approved Menadione increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [14]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [15]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [16]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [17]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [18]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [19]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [20]
Ethanol DMDRQZU Approved Ethanol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [21]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [13]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [24]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [7]
Ifosfamide DMCT3I8 Approved Ifosfamide decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [7]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [7]
Sulindac DM2QHZU Approved Sulindac increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [25]
Ibuprofen DM8VCBE Approved Ibuprofen increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [26]
Lindane DMB8CNL Approved Lindane increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [19]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [27]
Chenodiol DMQ8JIK Approved Chenodiol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [28]
Ampicillin DMHWE7P Approved Ampicillin decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [29]
Bosentan DMIOGBU Approved Bosentan increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [30]
Methimazole DM25FL8 Approved Methimazole increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [31]
Clavulanate DM2FGRT Approved Clavulanate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [32]
Benzoic acid DMKB9FI Approved Benzoic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
Gamolenic acid DMQN30Z Approved Gamolenic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [33]
Naproxen DMZ5RGV Approved Naproxen increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Ketoprofen DMRKXPT Approved Ketoprofen increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Nitrofurantoin DM7PQIK Approved Nitrofurantoin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [34]
Suprofen DMKXJZ7 Approved Suprofen increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [35]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [23]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [36]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [37]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [38]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [38]
Genistein DM0JETC Phase 2/3 Genistein affects the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [39]
Phenol DM1QSM3 Phase 2/3 Phenol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [19]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [40]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [41]
PEITC DMOMN31 Phase 2 PEITC increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [42]
Disulfiram DMCL2OK Phase 2 Trial Disulfiram increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
Impoyz DMB1N6P Phase 2 Impoyz decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [43]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [45]
LY294002 DMY1AFS Phase 1 LY294002 decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [27]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [46]
Eugenol DM7US1H Patented Eugenol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
T83193 DMHO29Y Patented T83193 increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [48]
Tetramethylpyrazine DMC0WNB Discontinued in Phase 2 Tetramethylpyrazine increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [49]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [50]
Scriptaid DM9JZ21 Preclinical Scriptaid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [51]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [37]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [52]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [54]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [55]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [56]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [57]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [58]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [59]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [48]
acrolein DMAMCSR Investigative acrolein increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [60]
Arachidonic acid DMUOQZD Investigative Arachidonic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [61]
Microcystin-LR DMTMLRN Investigative Microcystin-LR decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [62]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid affects the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [63]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [64]
Kaempferol DMHEMUB Investigative Kaempferol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [10]
Linalool DMGZQ5P Investigative Linalool increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [52]
Apigenin DMI3491 Investigative Apigenin increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [10]
2-tert-butylbenzene-1,4-diol DMNXI1E Investigative 2-tert-butylbenzene-1,4-diol decreases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [38]
DM9CEI5 increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [28]
15-deoxy-Delta(12, 14)-prostaglandin J(2) DM8VUX3 Investigative 15-deoxy-Delta(12, 14)-prostaglandin J(2) increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [65]
Chlorogenic acid DM2Y3P4 Investigative Chlorogenic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [66]
Protoporphyrin IX DMWYE7A Investigative Protoporphyrin IX increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [67]
USNIC ACID DMGOURX Investigative USNIC ACID increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [68]
Icosapentum DMF1CM7 Investigative Icosapentum increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [33]
methyl salicylate DMKCG8H Investigative methyl salicylate increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
OXYRESVERATROL DMN7S4L Investigative OXYRESVERATROL increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [69]
2-Propanol, Isopropanol DML5O0H Investigative 2-Propanol, Isopropanol increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [22]
All-trans-retinal DM6CEVB Investigative All-trans-retinal increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [70]
Alpha-linolenic acid DMY64HE Investigative Alpha-linolenic acid increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [33]
THIOCTIC ACID DMNFCXW Investigative THIOCTIC ACID increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [71]
2-chloro-5-nitro-N-phenylbenzamide DMUGQIV Investigative 2-chloro-5-nitro-N-phenylbenzamide increases the expression of Glutamate--cysteine ligase catalytic subunit (GCLC). [72]
------------------------------------------------------------------------------------
⏷ Show the Full List of 97 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Glutamate--cysteine ligase catalytic subunit (GCLC). [44]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Glutamate--cysteine ligase catalytic subunit (GCLC). [47]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the methylation of Glutamate--cysteine ligase catalytic subunit (GCLC). [53]
------------------------------------------------------------------------------------

References

1 The molecular basis of a case of gamma-glutamylcysteine synthetase deficiency. Blood. 1999 Oct 15;94(8):2890-4.
2 In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells. Arch Toxicol. 2016 Mar;90(3):677-89. doi: 10.1007/s00204-015-1483-z. Epub 2015 Feb 26.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression data from acetaminophen-induced toxicity in human hepatic in vitro systems and clinical liver samples. Data Brief. 2016 Mar 26;7:1052-1057. doi: 10.1016/j.dib.2016.03.069. eCollection 2016 Jun.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology. 2010 Jan 31;268(1-2):31-9.
10 Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med. 2002 Mar 1;32(5):386-93. doi: 10.1016/s0891-5849(01)00812-7.
11 Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther. 2009 May;8(5):1197-206.
12 Neuroprotective effects of glucomoringin-isothiocyanate against H(2)O(2)-Induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. Neurotoxicology. 2019 Dec;75:89-104. doi: 10.1016/j.neuro.2019.09.008. Epub 2019 Sep 12.
13 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
14 Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy. 2002 Apr;32(4):571-7. doi: 10.1046/j.0954-7894.2002.01294.x.
15 Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma. Tumour Biol. 2017 Jun;39(6):1010428317702649. doi: 10.1177/1010428317702649.
16 Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020 Jan;28:101321. doi: 10.1016/j.redox.2019.101321. Epub 2019 Sep 5.
17 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
18 Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase. J Biol Chem. 2013 Oct 4;288(40):28792-800. doi: 10.1074/jbc.M113.491365. Epub 2013 Aug 12.
19 Oxidative stress mechanisms do not discriminate between genotoxic and nongenotoxic liver carcinogens. Chem Res Toxicol. 2015 Aug 17;28(8):1636-46.
20 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
21 Ethanol-induced expression of glutamate-cysteine ligase catalytic subunit gene is mediated by NF-kappaB. Toxicol Lett. 2009 Mar 10;185(2):110-5. doi: 10.1016/j.toxlet.2008.12.006. Epub 2008 Dec 14.
22 Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci. 2010 Sep;117(1):81-9.
23 Redox-sensitive interaction between KIAA0132 and Nrf2 mediates indomethacin-induced expression of gamma-glutamylcysteine synthetase. Free Radic Biol Med. 2002 Apr 1;32(7):650-62. doi: 10.1016/s0891-5849(02)00755-4.
24 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
25 Induction of multidrug resistance proteins MRP1 and MRP3 and gamma-glutamylcysteine synthetase gene expression by nonsteroidal anti-inflammatory drugs in human colon cancer cells. Biochem Biophys Res Commun. 2002 Feb 8;290(5):1427-33. doi: 10.1006/bbrc.2002.6367.
26 Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol. 2022 Aug;166:113251. doi: 10.1016/j.fct.2022.113251. Epub 2022 Jun 21.
27 Ursodeoxycholic acid induces glutathione synthesis through activation of PI3K/Akt pathway in HepG2 cells. Biochem Pharmacol. 2009 Mar 1;77(5):858-66. doi: 10.1016/j.bcp.2008.11.012. Epub 2008 Nov 25.
28 Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress. Mol Pharmacol. 2007 Nov;72(5):1380-90. doi: 10.1124/mol.107.039370. Epub 2007 Aug 27.
29 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
30 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
31 Blood cell oxidative stress precedes hemolysis in whole blood-liver slice co-cultures of rat, dog, and human tissues. Toxicol Appl Pharmacol. 2010 May 1;244(3):354-65. doi: 10.1016/j.taap.2010.01.017. Epub 2010 Feb 6.
32 Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol. 2021 Dec;158:112664. doi: 10.1016/j.fct.2021.112664. Epub 2021 Nov 9.
33 Conjugated linoleic acid, unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation. Br J Nutr. 2006 Nov;96(5):811-9.
34 Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes. Cell Biol Toxicol. 2022 Oct;38(5):847-864. doi: 10.1007/s10565-021-09610-3. Epub 2021 May 22.
35 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
36 Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol. 2013 Nov 1;272(3):726-35.
37 Enrichment of Nur77 mediated by retinoic acid receptor leads to apoptosis of human hepatocellular carcinoma cells induced by fenretinide and histone deacetylase inhibitors. Hepatology. 2011 Mar;53(3):865-74. doi: 10.1002/hep.24101. Epub 2011 Feb 11.
38 Mapping the dynamics of Nrf2 antioxidant and NFB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses. Toxicol In Vitro. 2022 Oct;84:105419. doi: 10.1016/j.tiv.2022.105419. Epub 2022 Jun 17.
39 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
40 Upregulation of genes orchestrating keratinocyte differentiation, including the novel marker gene ID2, by contact sensitizers in human bulge-derived keratinocytes. J Biochem Mol Toxicol. 2010 Jan-Feb;24(1):10-20.
41 Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis. 2008 Aug;199(2):278-87. doi: 10.1016/j.atherosclerosis.2007.11.016. Epub 2007 Dec 21.
42 Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression. Toxicol Sci. 2010 Aug;116(2):422-32.
43 Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol. 2006 Aug;155(2):275-81.
44 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
45 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
46 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
47 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
48 Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat Res. 2007 Mar 1;616(1-2):60-9. doi: 10.1016/j.mrfmmm.2006.11.022. Epub 2006 Dec 18.
49 Effect of dihydropyrazines on human hepatoma HepG2 cells: a comparative study using 2,3-dihydro-5,6-dimethylpyrazine and 3-hydro-2,2,5,6-tetramethylpyrazine. J Toxicol Sci. 2014 Aug;39(4):601-8. doi: 10.2131/jts.39.601.
50 Induction of ubiquitin C (UBC) gene transcription is mediated by HSF1: role of proteotoxic and oxidative stress. FEBS Open Bio. 2018 Jul 24;8(9):1471-1485. doi: 10.1002/2211-5463.12484. eCollection 2018 Sep.
51 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
52 A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan Ocul Toxicol. 2010 Sep;29(3):171-92.
53 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
54 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
55 Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol. 2018 Dec;122:59-68.
56 Hydrogen peroxide responsive miR153 targets Nrf2/ARE cytoprotection in paraquat induced dopaminergic neurotoxicity. Toxicol Lett. 2014 Aug 4;228(3):179-91.
57 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
58 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
59 The THP-1 cell toolbox: a new concept integrating the key events of skin sensitization. Arch Toxicol. 2019 Apr;93(4):941-951.
60 Acrolein causes transcriptional induction of phase II genes by activation of Nrf2 in human lung type II epithelial (A549) cells. Toxicol Lett. 2002 Jun 7;132(1):27-36.
61 Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis. 2006 Oct;27(10):1950-60.
62 Down-regulation of GCLC is involved in microcystin-LR-induced malignant transformation of human liver cells. Toxicology. 2019 Jun 1;421:49-58.
63 Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol Lett. 2012 Jul 7;212(1):18-28. doi: 10.1016/j.toxlet.2012.04.013. Epub 2012 May 1.
64 The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol. 2015 Dec;86:191-201.
65 Multidrug resistance-associated protein 1 mediates 15-deoxy-(12,14)-prostaglandin J2-induced expression of glutamate cysteine ligase expression via Nrf2 signaling in human breast cancer cells. Chem Res Toxicol. 2011 Aug 15;24(8):1231-41. doi: 10.1021/tx200090n. Epub 2011 Jul 25.
66 Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol Sci. 2018 Mar 1;162(1):99-112.
67 The novel antioxidant 3-O-caffeoyl-1-methylquinic acid induces Nrf2-dependent phase II detoxifying genes and alters intracellular glutathione redox. Free Radic Biol Med. 2006 Apr 15;40(8):1349-61.
68 Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol. 2017 Mar;91(3):1293-1307.
69 Oxyresveratrol abrogates oxidative stress by activating ERK-Nrf2 pathway in the liver. Chem Biol Interact. 2016 Feb 5;245:110-21.
70 Involvement of endoplasmic reticulum stress in all-trans-retinal-induced retinal pigment epithelium degeneration. Toxicol Sci. 2015 Jan;143(1):196-208. doi: 10.1093/toxsci/kfu223. Epub 2014 Oct 20.
71 (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4302-10. doi: 10.1167/iovs.04-1098.
72 Identification of UV-protective activators of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) by combining a chemical library screen with computer-based virtual screening. J Biol Chem. 2012 Sep 21;287(39):33001-13.
73 -Glutamylcysteine synthetase (-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells. Life Sci. 2018 Apr 1;198:25-31. doi: 10.1016/j.lfs.2018.02.015. Epub 2018 Feb 14.
74 Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet. 2004 Dec 15;13(24):3029-43. doi: 10.1093/hmg/ddh331. Epub 2004 Oct 20.
75 Glutathione-related enzymes contribute to resistance of tumor cells and low toxicity in normal organs to artesunate. In Vivo. 2005 Jan-Feb;19(1):225-32.
76 Elevated GSH level increases cadmium resistance through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8. Mol Pharmacol. 2008 Sep;74(3):823-33. doi: 10.1124/mol.108.046862. Epub 2008 Jun 12.
77 Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol. 2003 Feb 19;41(4):539-45. doi: 10.1016/s0735-1097(02)02866-8.