General Information of Drug Off-Target (DOT) (ID: OTW1SCZW)

DOT Name Cytoplasmic polyadenylation element-binding protein 4 (CPEB4)
Synonyms CPE-BP4; CPE-binding protein 4; hCPEB-4
Gene Name CPEB4
Related Disease
Liver cirrhosis ( )
Adult glioblastoma ( )
Advanced cancer ( )
Autism spectrum disorder ( )
B-cell neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatocellular carcinoma ( )
Malignant glioma ( )
Metastatic malignant neoplasm ( )
Non-alcoholic fatty liver disease ( )
Pancreatic ductal carcinoma ( )
Patent ductus arteriosus ( )
Seasonal allergic rhinitis ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Head-neck squamous cell carcinoma ( )
Inflammatory bowel disease ( )
Liver cancer ( )
Adenocarcinoma ( )
Ankylosing spondylitis ( )
Crohn disease ( )
Gallbladder cancer ( )
Gallbladder carcinoma ( )
Gastric cancer ( )
Melanoma ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Stomach cancer ( )
Ulcerative colitis ( )
UniProt ID
CPEB4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2MKI; 2MKJ; 5DIF
Pfam ID
PF16366 ; PF16367
Sequence
MGDYGFGVLVQSNTGNKSAFPVRFHPHLQPPHHHQNATPSPAAFINNNTAANGSSAGSAW
LFPAPATHNIQDEILGSEKAKSQQQEQQDPLEKQQLSPSPGQEAGILPETEKAKSEENQG
DNSSENGNGKEKIRIESPVLTGFDYQEATGLGTSTQPLTSSASSLTGFSNWSAAIAPSSS
TIINEDASFFHQGGVPAASANNGALLFQNFPHHVSPGFGGSFSPQIGPLSQHHPHHPHFQ
HHHSQHQQQRRSPASPHPPPFTHRNAAFNQLPHLANNLNKPPSPWSSYQSPSPTPSSSWS
PGGGGYGGWGGSQGRDHRRGLNGGITPLNSISPLKKNFASNHIQLQKYARPSSAFAPKSW
MEDSLNRADNIFPFPDRPRTFDMHSLESSLIDIMRAENDTIKGRLNYSYPGSDSSLLINA
RTYGRRRGQSSLFPMEDGFLDDGRGDQPLHSGLGSPHCFSHQNGERVERYSRKVFVGGLP
PDIDEDEITASFRRFGPLIVDWPHKAESKSYFPPKGYAFLLFQDESSVQALIDACIEEDG
KLYLCVSSPTIKDKPVQIRPWNLSDSDFVMDGSQPLDPRKTIFVGGVPRPLRAVELAMIM
DRLYGGVCYAGIDTDPELKYPKGAGRVAFSNQQSYIAAISARFVQLQHGEIDKRVEVKPY
VLDDQLCDECQGARCGGKFAPFFCANVTCLQYYCEYCWAAIHSRAGREFHKPLVKEGGDR
PRHISFRWN
Function
Sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element (CPE), an uridine-rich sequence element (consensus sequence 5'-UUUUUAU-3') within the mRNA 3'-UTR. RNA binding results in a clear conformational change analogous to the Venus fly trap mechanism. Regulates activation of unfolded protein response (UPR) in the process of adaptation to ER stress in liver, by maintaining translation of CPE-regulated mRNAs in conditions in which global protein synthesis is inhibited. Required for cell cycle progression, specifically for cytokinesis and chromosomal segregation. Plays a role as an oncogene promoting tumor growth and progression by positively regulating translation of t-plasminogen activator/PLAT. Stimulates proliferation of melanocytes. In contrast to CPEB1 and CPEB3, does not play role in synaptic plasticity, learning and memory.
Tissue Specificity Expressed in pancreas in islets and ductal cells (at protein level) . Expressed in melanocytes .
KEGG Pathway
Oocyte meiosis (hsa04114 )
Progesterone-mediated oocyte maturation (hsa04914 )

Molecular Interaction Atlas (MIA) of This DOT

34 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Liver cirrhosis DIS4G1GX Definitive Altered Expression [1]
Adult glioblastoma DISVP4LU Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Altered Expression [2]
Autism spectrum disorder DISXK8NV Strong Biomarker [3]
B-cell neoplasm DISVY326 Strong Altered Expression [4]
Breast cancer DIS7DPX1 Strong Biomarker [5]
Breast carcinoma DIS2UE88 Strong Biomarker [5]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [6]
Glioblastoma multiforme DISK8246 Strong Biomarker [2]
Glioma DIS5RPEH Strong Altered Expression [2]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [7]
Malignant glioma DISFXKOV Strong Genetic Variation [8]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [5]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [9]
Pancreatic ductal carcinoma DIS26F9Q Strong Biomarker [7]
Patent ductus arteriosus DIS9P8YS Strong Biomarker [7]
Seasonal allergic rhinitis DIS58KQX Strong Biomarker [10]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W moderate Altered Expression [11]
Head-neck squamous cell carcinoma DISF7P24 moderate Altered Expression [12]
Inflammatory bowel disease DISGN23E moderate Genetic Variation [13]
Liver cancer DISDE4BI moderate Altered Expression [11]
Adenocarcinoma DIS3IHTY Limited Altered Expression [14]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [15]
Crohn disease DIS2C5Q8 Limited Genetic Variation [15]
Gallbladder cancer DISXJUAF Limited Biomarker [16]
Gallbladder carcinoma DISD6ACL Limited Biomarker [16]
Gastric cancer DISXGOUK Limited Altered Expression [17]
Melanoma DIS1RRCY Limited Biomarker [18]
Neoplasm DISZKGEW Limited Altered Expression [12]
Non-small-cell lung cancer DIS5Y6R9 Limited Biomarker [19]
Psoriasis DIS59VMN Limited Genetic Variation [15]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [15]
Stomach cancer DISKIJSX Limited Altered Expression [17]
Ulcerative colitis DIS8K27O Limited Genetic Variation [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [20]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [21]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [22]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [24]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [25]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [26]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [27]
Marinol DM70IK5 Approved Marinol increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [28]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [29]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [30]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [31]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [33]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [34]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [36]
Oxamflatin DM1TG3C Terminated Oxamflatin increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [39]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [40]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [41]
Apicidin DM83WVF Investigative Apicidin increases the expression of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [32]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Cytoplasmic polyadenylation element-binding protein 4 (CPEB4). [35]
------------------------------------------------------------------------------------

References

1 Sequential Functions of CPEB1 and CPEB4 Regulate Pathologic Expression of Vascular Endothelial Growth Factor and Angiogenesis in Chronic Liver Disease.Gastroenterology. 2016 Apr;150(4):982-97.e30. doi: 10.1053/j.gastro.2015.11.038. Epub 2015 Nov 26.
2 CPEB4 regulates glioblastoma cell proliferation and predicts poor outcome of patients.Clin Neurol Neurosurg. 2018 Jun;169:92-97. doi: 10.1016/j.clineuro.2018.04.008. Epub 2018 Apr 3.
3 Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 mis-splicing.Nature. 2018 Aug;560(7719):441-446. doi: 10.1038/s41586-018-0423-5. Epub 2018 Aug 15.
4 MicroRNA-203-mediated posttranscriptional deregulation of CPEB4 contributes to colorectal cancer progression.Biochem Biophys Res Commun. 2015 Oct 16;466(2):206-13. doi: 10.1016/j.bbrc.2015.09.008. Epub 2015 Sep 8.
5 CPEB4 promotes cell migration and invasion via upregulating Vimentin expression in breast cancer.Biochem Biophys Res Commun. 2017 Jul 22;489(2):135-141. doi: 10.1016/j.bbrc.2017.05.112. Epub 2017 May 20.
6 High expression of cytoplasmic polyadenylation element-binding protein 4 correlates with poor prognosis of patients with colorectal cancer.Virchows Arch. 2017 Jan;470(1):37-45. doi: 10.1007/s00428-016-2037-3. Epub 2016 Oct 22.
7 Biphasic and Stage-Associated Expression of CPEB4 in Hepatocellular Carcinoma.PLoS One. 2016 May 9;11(5):e0155025. doi: 10.1371/journal.pone.0155025. eCollection 2016.
8 Somatic CPEB4 and CPEB1 genes mutations spectrum on the prognostic predictive accuracy in patients with high-grade glioma and their clinical significance.J Neurol Sci. 2016 Apr 15;363:80-3. doi: 10.1016/j.jns.2016.02.032. Epub 2016 Feb 16.
9 Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress.Nat Cell Biol. 2017 Feb;19(2):94-105. doi: 10.1038/ncb3461. Epub 2017 Jan 16.
10 Bioinformatics-Based Approaches Predict That MIR-17-5P Functions in the Pathogenesis of Seasonal Allergic Rhinitis Through Regulating ABCA1 and CD69.Am J Rhinol Allergy. 2019 May;33(3):269-276. doi: 10.1177/1945892418823388. Epub 2019 Jan 8.
11 MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma.PLoS One. 2012;7(11):e48958. doi: 10.1371/journal.pone.0048958. Epub 2012 Nov 7.
12 Downregulated cytoplasmic polyadenylation element-binding protein-4 is associated with the carcinogenesis of head and neck squamous cell carcinoma.Oncol Lett. 2018 Mar;15(3):3226-3232. doi: 10.3892/ol.2017.7661. Epub 2017 Dec 20.
13 Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.Nat Genet. 2015 Sep;47(9):979-986. doi: 10.1038/ng.3359. Epub 2015 Jul 20.
14 Key contribution of CPEB4-mediated translational control to cancer progression.Nat Med. 2011 Dec 4;18(1):83-90. doi: 10.1038/nm.2540.
15 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
16 MicroRNA-29c-5p suppresses gallbladder carcinoma progression by directly targeting CPEB4 and inhibiting the MAPK pathway.Cell Death Differ. 2017 Mar;24(3):445-457. doi: 10.1038/cdd.2016.146. Epub 2017 Jan 6.
17 CPEB4 promotes growth and metastasis of gastric cancer cells via ZEB1-mediated epithelial- mesenchymal transition.Onco Targets Ther. 2018 Sep 21;11:6153-6165. doi: 10.2147/OTT.S175428. eCollection 2018.
18 Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers.Nat Commun. 2016 Nov 18;7:13418. doi: 10.1038/ncomms13418.
19 Knockdown of CPEB4 expression suppresses cell migration and invasion via Akt pathway in non-small cell lung cancer.Cell Biol Int. 2018 Nov;42(11):1484-1491. doi: 10.1002/cbin.10930. Epub 2018 Feb 1.
20 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
23 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008 Apr;116(4):524-31. doi: 10.1289/ehp.10861.
26 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
27 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
28 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
29 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
30 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
31 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
32 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
33 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
34 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
35 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
36 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
37 Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol. 2021 May;95(5):1631-1645. doi: 10.1007/s00204-021-03014-2. Epub 2021 Mar 26.
38 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
39 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
40 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
41 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.