General Information of Drug Off-Target (DOT) (ID: OTZ8G8FE)

DOT Name ATP-sensitive inward rectifier potassium channel 8 (KCNJ8)
Synonyms Inward rectifier K(+) channel Kir6.1; Potassium channel, inwardly rectifying subfamily J member 8; uKATP-1
Gene Name KCNJ8
Related Disease
Amelogenesis imperfecta type 1G ( )
Angina pectoris ( )
Coronary atherosclerosis ( )
Dilated cardiomyopathy 1A ( )
Hypertrichosis lanuginosa congenita ( )
Hypertrichotic osteochondrodysplasia Cantu type ( )
Myocardial ischemia ( )
Neoplasm ( )
Parkinsonian disorder ( )
Sciatic neuropathy ( )
Arrhythmia ( )
Ventricular fibrillation ( )
Brugada syndrome 1 ( )
Conduction system disorder ( )
High blood pressure ( )
Sinoatrial node disorder ( )
Amyotrophic lateral sclerosis ( )
Atrial fibrillation ( )
Brugada syndrome ( )
Hypertrophic cardiomyopathy ( )
Ventricular tachycardia ( )
UniProt ID
KCNJ8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01007 ; PF17655
Sequence
MLARKSIIPEEYVLARIAAENLRKPRIRDRLPKARFIAKSGACNLAHKNIREQGRFLQDI
FTTLVDLKWRHTLVIFTMSFLCSWLLFAIMWWLVAFAHGDIYAYMEKSGMEKSGLESTVC
VTNVRSFTSAFLFSIEVQVTIGFGGRMMTEECPLAITVLILQNIVGLIINAVMLGCIFMK
TAQAHRRAETLIFSRHAVIAVRNGKLCFMFRVGDLRKSMIISASVRIQVVKKTTTPEGEV
VPIHQLDIPVDNPIESNNIFLVAPLIICHVIDKRSPLYDISATDLANQDLEVIVILEGVV
ETTGITTQARTSYIAEEIQWGHRFVSIVTEEEGVYSVDYSKFGNTVKVAAPRCSARELDE
KPSILIQTLQKSELSHQNSLRKRNSMRRNNSMRRNNSIRRNNSSLMVPKVQFMTPEGNQN
TSES
Function
This potassium channel is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by external barium.
Tissue Specificity Predominantly detected in fetal and adult heart.
KEGG Pathway
cGMP-PKG sig.ling pathway (hsa04022 )
Reactome Pathway
ATP sensitive Potassium channels (R-HSA-1296025 )

Molecular Interaction Atlas (MIA) of This DOT

21 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Amelogenesis imperfecta type 1G DISS8U5Q Strong Biomarker [1]
Angina pectoris DISCLMC4 Strong Biomarker [2]
Coronary atherosclerosis DISKNDYU Strong Biomarker [3]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Altered Expression [4]
Hypertrichosis lanuginosa congenita DISX1C1I Strong Biomarker [5]
Hypertrichotic osteochondrodysplasia Cantu type DISI9W4I Strong Autosomal dominant [6]
Myocardial ischemia DISFTVXF Strong Biomarker [7]
Neoplasm DISZKGEW Strong Biomarker [8]
Parkinsonian disorder DISHGY45 Strong Biomarker [9]
Sciatic neuropathy DISMGDKX Strong Biomarker [10]
Arrhythmia DISFF2NI moderate Biomarker [11]
Ventricular fibrillation DIS7IN76 moderate Genetic Variation [6]
Brugada syndrome 1 DISKBA7V Disputed Autosomal dominant [12]
Conduction system disorder DISED5HG Disputed Biomarker [13]
High blood pressure DISY2OHH Disputed Biomarker [14]
Sinoatrial node disorder DISYJI6J Disputed Biomarker [13]
Amyotrophic lateral sclerosis DISF7HVM Limited Altered Expression [15]
Atrial fibrillation DIS15W6U Limited Biomarker [16]
Brugada syndrome DISSGN0E Limited Unknown [17]
Hypertrophic cardiomyopathy DISQG2AI Limited Biomarker [18]
Ventricular tachycardia DISIBXJ3 Limited Biomarker [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [19]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [35]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [20]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [21]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [22]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [24]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [25]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [26]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [27]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [28]
Triclosan DMZUR4N Approved Triclosan decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [29]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [30]
Decitabine DMQL8XJ Approved Decitabine increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [31]
Progesterone DMUY35B Approved Progesterone increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [32]
Glibenclamide DM8JXPZ Approved Glibenclamide decreases the activity of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [33]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [34]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [36]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [37]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [38]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [39]
Deguelin DMXT7WG Investigative Deguelin increases the expression of ATP-sensitive inward rectifier potassium channel 8 (KCNJ8). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8.Heart Rhythm. 2012 Apr;9(4):548-55. doi: 10.1016/j.hrthm.2011.10.035. Epub 2011 Nov 3.
2 Absence of Kir6.1/KCNJ8 mutations in Italian patients with abnormal coronary vasomotion.Int J Mol Med. 2003 Oct;12(4):509-12.
3 Mouse model of Prinzmetal angina by disruption of the inward rectifier Kir6.1.Nat Med. 2002 May;8(5):466-72. doi: 10.1038/nm0502-466.
4 Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.PLoS One. 2013 Dec 5;8(12):e79792. doi: 10.1371/journal.pone.0079792. eCollection 2013.
5 Topical sulfonylurea as a novel therapy for hypertrichosis secondary to diazoxide, and potentially for other conditions with excess hair growth.Med Hypotheses. 2015 Dec;85(6):969-71. doi: 10.1016/j.mehy.2015.08.025. Epub 2015 Sep 5.
6 Mutation of KCNJ8 in a patient with Cant syndrome with unique vascular abnormalities - support for the role of K(ATP) channels in this condition. Eur J Med Genet. 2013 Dec;56(12):678-82. doi: 10.1016/j.ejmg.2013.09.009. Epub 2013 Oct 28.
7 Effect of electronic stimulation at Neiguan (PC 6) acupoint on gene expression of adenosine triphosphate-sensitive potassium channel and protein kinases in rats with myocardial ischemia.J Tradit Chin Med. 2015 Oct;35(5):577-82. doi: 10.1016/s0254-6272(15)30142-4.
8 Diagnostic marker signature for esophageal cancer from transcriptome analysis.Tumour Biol. 2016 May;37(5):6349-58. doi: 10.1007/s13277-015-4400-4. Epub 2015 Dec 2.
9 Studies of ATP-sensitive potassium channels on 6-hydroxydopamine and haloperidol rat models of Parkinson's disease: implications for treating Parkinson's disease?.Neuropharmacology. 2005 Jun;48(7):984-92. doi: 10.1016/j.neuropharm.2005.01.009.
10 Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord.Pain. 2011 Nov;152(11):2605-2615. doi: 10.1016/j.pain.2011.08.003. Epub 2011 Sep 9.
11 Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome.Circ Cardiovasc Genet. 2011 Oct;4(5):510-5. doi: 10.1161/CIRCGENETICS.111.960195. Epub 2011 Aug 11.
12 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
13 Role of ATP-sensitive K+ channels in cardiac arrhythmias.J Cardiovasc Pharmacol Ther. 2014 May;19(3):237-43. doi: 10.1177/1074248413515078. Epub 2013 Dec 23.
14 A new ATP-sensitive potassium channel opener protects the kidney from hypertensive damage in spontaneously hypertensive rats.J Pharmacol Exp Ther. 2005 Nov;315(2):501-9. doi: 10.1124/jpet.105.089722. Epub 2005 Jul 28.
15 K(ATP) Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis.Mol Neurobiol. 2018 Oct;55(10):7962-7972. doi: 10.1007/s12035-018-0970-7. Epub 2018 Feb 28.
16 Ranolazine and Vernakalant Prevent Ventricular Arrhythmias in an Experimental Whole-Heart Model of Short QT Syndrome.J Cardiovasc Electrophysiol. 2016 Oct;27(10):1214-1219. doi: 10.1111/jce.13029. Epub 2016 Jul 13.
17 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
18 Genetics of sudden cardiac death syndromes.Curr Opin Cardiol. 2011 May;26(3):196-203. doi: 10.1097/HCO.0b013e3283459893.
19 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
21 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
22 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
23 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
26 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
27 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
28 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
29 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
30 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
31 The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009 Feb;41(2):178-186.
32 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
33 The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors. Br J Pharmacol. 2010 Feb 1;159(3):650-8. doi: 10.1111/j.1476-5381.2009.00557.x. Epub 2009 Dec 24.
34 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
37 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
38 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
39 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
40 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.