General Information of Drug Off-Target (DOT) (ID: OT1LQSGX)

DOT Name Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2)
Gene Name MTHFD2
Related Disease
Arteriosclerosis ( )
Atherosclerosis ( )
Coronary heart disease ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Classic Hodgkin lymphoma ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Glioma ( )
Hepatocellular carcinoma ( )
Liver cancer ( )
Non-small-cell lung cancer ( )
Renal cell carcinoma ( )
leukaemia ( )
Leukemia ( )
Neoplasm ( )
UniProt ID
MTDC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5TC4; 6JIB; 6JID; 6KG2; 6S4A; 6S4E; 6S4F; 7EHJ; 7EHM; 7EHN; 7EHV
EC Number
1.5.1.15; 3.5.4.9
Pfam ID
PF00763 ; PF02882
Sequence
MAATSLMSALAARLLQPAHSCSLRLRPFHLAAVRNEAVVISGRKLAQQIKQEVRQEVEEW
VASGNKRPHLSVILVGENPASHSYVLNKTRAAAVVGINSETIMKPASISEEELLNLINKL
NNDDNVDGLLVQLPLPEHIDERRICNAVSPDKDVDGFHVINVGRMCLDQYSMLPATPWGV
WEIIKRTGIPTLGKNVVVAGRSKNVGMPIAMLLHTDGAHERPGGDATVTISHRYTPKEQL
KKHTILADIVISAAGIPNLITADMIKEGAAVIDVGINRVHDPVTAKPKLVGDVDFEGVRQ
KAGYITPVPGGVGPMTVAMLMKNTIIAAKKVLRLEEREVLKSKELGVATN
Function Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency.
KEGG Pathway
One carbon pool by folate (hsa00670 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Metabolism of folate and pterines (R-HSA-196757 )
BioCyc Pathway
MetaCyc:HS00858-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

18 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arteriosclerosis DISK5QGC Definitive Biomarker [1]
Atherosclerosis DISMN9J3 Definitive Biomarker [1]
Coronary heart disease DIS5OIP1 Definitive Genetic Variation [1]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Breast cancer DIS7DPX1 Strong Biomarker [4]
Breast carcinoma DIS2UE88 Strong Biomarker [4]
Classic Hodgkin lymphoma DISV1LU6 Strong Biomarker [5]
Clear cell renal carcinoma DISBXRFJ Strong Posttranslational Modification [6]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [7]
Glioma DIS5RPEH Strong Biomarker [8]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [9]
Liver cancer DISDE4BI Strong Biomarker [10]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [11]
Renal cell carcinoma DISQZ2X8 Strong Posttranslational Modification [6]
leukaemia DISS7D1V moderate Biomarker [12]
Leukemia DISNAKFL moderate Biomarker [12]
Neoplasm DISZKGEW moderate Altered Expression [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2) affects the response to substance of Mitoxantrone. [42]
Artesunate DMR27C8 Approved Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2) decreases the response to substance of Artesunate. [43]
Pemetrexed DMMX2E6 Approved Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2) increases the response to substance of Pemetrexed. [5]
------------------------------------------------------------------------------------
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [13]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [15]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [16]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [17]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [18]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [19]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [20]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [21]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [22]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [23]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [24]
Marinol DM70IK5 Approved Marinol decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [25]
Progesterone DMUY35B Approved Progesterone increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [26]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [24]
Azacitidine DMTA5OE Approved Azacitidine decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [27]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [22]
Sulindac DM2QHZU Approved Sulindac increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [28]
Lindane DMB8CNL Approved Lindane increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [22]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [29]
Bexarotene DMOBIKY Approved Bexarotene decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [30]
Fenretinide DMRD5SP Phase 3 Fenretinide affects the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [31]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [32]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [33]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [34]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [35]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [36]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [38]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [39]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [40]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2). [37]
------------------------------------------------------------------------------------

References

1 Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells.Nat Commun. 2018 Jun 12;9(1):2292. doi: 10.1038/s41467-018-04602-0.
2 Upregulation of miR-504-3p is associated with favorable prognosis of acute myeloid leukemia and may serve as a tumor suppressor by targeting MTHFD2.Eur Rev Med Pharmacol Sci. 2019 Feb;23(3):1203-1213. doi: 10.26355/eurrev_201902_17013.
3 Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2.Oncogene. 2019 Apr;38(14):2464-2481. doi: 10.1038/s41388-018-0589-1. Epub 2018 Dec 7.
4 Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer.Nat Commun. 2014;5:3128. doi: 10.1038/ncomms4128.
5 KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol Cancer Ther. 2014 Jun;13(6):1611-24. doi: 10.1158/1535-7163.MCT-13-0649. Epub 2014 Mar 31.
6 MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma.Oncogene. 2019 Aug;38(34):6211-6225. doi: 10.1038/s41388-019-0869-4. Epub 2019 Jul 9.
7 Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications.J Natl Cancer Inst. 2019 Jun 1;111(6):584-596. doi: 10.1093/jnci/djy160.
8 MicroRNA-940 inhibits glioma progression by blocking mitochondrial folate metabolism through targeting of MTHFD2.Am J Cancer Res. 2019 Feb 1;9(2):250-269. eCollection 2019.
9 Methylenetetrahydrofolate dehydrogenase 2 overexpression is associated with tumor aggressiveness and poor prognosis in hepatocellular carcinoma.Dig Liver Dis. 2016 Aug;48(8):953-60. doi: 10.1016/j.dld.2016.04.015. Epub 2016 May 16.
10 In vitro synthesis of the trifunctional protein, methylenetetrahydrofolate dehydrogenase--methenyltetrahydrofolate cyclohydrolase--formyltetrahydrofolate synthetase, in normal and transformed cells.Can J Biochem Cell Biol. 1985 Nov;63(11):1189-93.
11 Down-regulation of MTHFD2 inhibits NSCLC progression by suppressing cycle-related genes.J Cell Mol Med. 2020 Jan;24(2):1568-1577. doi: 10.1111/jcmm.14844. Epub 2019 Nov 28.
12 Targeting MTHFD2 in acute myeloid leukemia.J Exp Med. 2016 Jun 27;213(7):1285-306. doi: 10.1084/jem.20151574. Epub 2016 Jun 20.
13 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
16 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
19 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
20 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
21 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
22 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
23 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
24 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
25 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
26 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
27 The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod. 2010 Nov;25(11):2859-69.
28 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
29 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
30 Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006 Dec 15;66(24):12009-18.
31 4-HPR modulates gene expression in ovarian cells. Int J Cancer. 2006 Sep 1;119(5):1005-13. doi: 10.1002/ijc.21797.
32 Capturing time-dependent activation of genes and stress-response pathways using transcriptomics in iPSC-derived renal proximal tubule cells. Cell Biol Toxicol. 2023 Aug;39(4):1773-1793. doi: 10.1007/s10565-022-09783-5. Epub 2022 Dec 31.
33 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
34 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
35 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
36 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
37 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
38 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
39 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
40 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
41 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
42 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
43 Factors determining sensitivity or resistance of tumor cell lines towards artesunate. Chem Biol Interact. 2010 Apr 15;185(1):42-52.
44 KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol Cancer Ther. 2014 Jun;13(6):1611-24. doi: 10.1158/1535-7163.MCT-13-0649. Epub 2014 Mar 31.