General Information of Drug Off-Target (DOT) (ID: OT3KYJQL)

DOT Name Fibrillin-2 (FBN2)
Gene Name FBN2
Related Disease
Arthrogryposis, distal, type 1A ( )
Arthrogryposis, distal, type 1B ( )
Arthrogryposis- oculomotor limitation-electroretinal anomalies syndrome ( )
Colon cancer ( )
Colon carcinoma ( )
Congenital contractural arachnodactyly ( )
Distal arthrogryposis type 5D ( )
Freeman-Sheldon syndrome ( )
Gordon syndrome ( )
Sheldon-hall syndrome ( )
Trismus-pseudocamptodactyly syndrome ( )
Adenocarcinoma ( )
Advanced cancer ( )
Androgen insensitivity syndrome ( )
Arteriosclerosis ( )
Arthrogryposis ( )
Atherosclerosis ( )
Cardiovascular disease ( )
Cholangiocarcinoma ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Connective tissue disorder ( )
Distal arthrogryposis ( )
Hepatocellular carcinoma ( )
Hereditary disorder of connective tissue ( )
Marfan syndrome ( )
Migraine disorder ( )
Neoplasm ( )
Non-insulin dependent diabetes ( )
Primary sclerosing cholangitis ( )
Age-related macular degeneration ( )
Carcinoma ( )
Hepatobiliary disorder ( )
Type-1/2 diabetes ( )
Colorectal neoplasm ( )
Lung cancer ( )
Lung carcinoma ( )
Metastatic malignant neoplasm ( )
Non-small-cell lung cancer ( )
Carpal tunnel syndrome ( )
Coronary heart disease ( )
Familial thoracic aortic aneurysm and aortic dissection ( )
Hepatitis C virus infection ( )
Macular degeneration, early-onset ( )
Pancreatic cancer ( )
UniProt ID
FBN2_HUMAN
Pfam ID
PF12662 ; PF12947 ; PF07645 ; PF21364 ; PF18193 ; PF14670 ; PF12661 ; PF00683
Sequence
MGRRRRLCLQLYFLWLGCVVLWAQGTAGQPQPPPPKPPRPQPPPQQVRSATAGSEGGFLA
PEYREEGAAVASRVRRRGQQDVLRGPNVCGSRFHSYCCPGWKTLPGGNQCIVPICRNSCG
DGFCSRPNMCTCSSGQISSTCGSKSIQQCSVRCMNGGTCADDHCQCQKGYIGTYCGQPVC
ENGCQNGGRCIGPNRCACVYGFTGPQCERDYRTGPCFTQVNNQMCQGQLTGIVCTKTLCC
ATIGRAWGHPCEMCPAQPQPCRRGFIPNIRTGACQDVDECQAIPGICQGGNCINTVGSFE
CRCPAGHKQSETTQKCEDIDECSIIPGICETGECSNTVGSYFCVCPRGYVTSTDGSRCID
QRTGMCFSGLVNGRCAQELPGRMTKMQCCCEPGRCWGIGTIPEACPVRGSEEYRRLCMDG
LPMGGIPGSAGSRPGGTGGNGFAPSGNGNGYGPGGTGFIPIPGGNGFSPGVGGAGVGAGG
QGPIITGLTILNQTIDICKHHANLCLNGRCIPTVSSYRCECNMGYKQDANGDCIDVDECT
SNPCTNGDCVNTPGSYYCKCHAGFQRTPTKQACIDIDECIQNGVLCKNGRCVNTDGSFQC
ICNAGFELTTDGKNCVDHDECTTTNMCLNGMCINEDGSFKCICKPGFVLAPNGRYCTDVD
ECQTPGICMNGHCINSEGSFRCDCPPGLAVGMDGRVCVDTHMRSTCYGGIKKGVCVRPFP
GAVTKSECCCANPDYGFGEPCQPCPAKNSAEFHGLCSSGVGITVDGRDINECALDPDICA
NGICENLRGSYRCNCNSGYEPDASGRNCIDIDECLVNRLLCDNGLCRNTPGSYSCTCPPG
YVFRTETETCEDINECESNPCVNGACRNNLGSFNCECSPGSKLSSTGLICIDSLKGTCWL
NIQDSRCEVNINGATLKSECCATLGAAWGSPCERCELDTACPRGLARIKGVTCEDVNECE
VFPGVCPNGRCVNSKGSFHCECPEGLTLDGTGRVCLDIRMEQCYLKWDEDECIHPVPGKF
RMDACCCAVGAAWGTECEECPKPGTKEYETLCPRGAGFANRGDVLTGRPFYKDINECKAF
PGMCTYGKCRNTIGSFKCRCNSGFALDMEERNCTDIDECRISPDLCGSGICVNTPGSFEC
ECFEGYESGFMMMKNCMDIDECERNPLLCRGGTCVNTEGSFQCDCPLGHELSPSREDCVD
INECSLSDNLCRNGKCVNMIGTYQCSCNPGYQATPDRQGCTDIDECMIMNGGCDTQCTNS
EGSYECSCSEGYALMPDGRSCADIDECENNPDICDGGQCTNIPGEYRCLCYDGFMASMDM
KTCIDVNECDLNSNICMFGECENTKGSFICHCQLGYSVKKGTTGCTDVDECEIGAHNCDM
HASCLNIPGSFKCSCREGWIGNGIKCIDLDECSNGTHQCSINAQCVNTPGSYRCACSEGF
TGDGFTCSDVDECAENINLCENGQCLNVPGAYRCECEMGFTPASDSRSCQDIDECSFQNI
CVFGTCNNLPGMFHCICDDGYELDRTGGNCTDIDECADPINCVNGLCVNTPGRYECNCPP
DFQLNPTGVGCVDNRVGNCYLKFGPRGDGSLSCNTEIGVGVSRSSCCCSLGKAWGNPCET
CPPVNSTEYYTLCPGGEGFRPNPITIILEDIDECQELPGLCQGGNCINTFGSFQCECPQG
YYLSEDTRICEDIDECFAHPGVCGPGTCYNTLGNYTCICPPEYMQVNGGHNCMDMRKSFC
YRSYNGTTCENELPFNVTKRMCCCTYNVGKAWNKPCEPCPTPGTADFKTICGNIPGFTFD
IHTGKAVDIDECKEIPGICANGVCINQIGSFRCECPTGFSYNDLLLVCEDIDECSNGDNL
CQRNADCINSPGSYRCECAAGFKLSPNGACVDRNECLEIPNVCSHGLCVDLQGSYQCICH
NGFKASQDQTMCMDVDECERHPCGNGTCKNTVGSYNCLCYPGFELTHNNDCLDIDECSSF
FGQVCRNGRCFNEIGSFKCLCNEGYELTPDGKNCIDTNECVALPGSCSPGTCQNLEGSFR
CICPPGYEVKSENCIDINECDEDPNICLFGSCTNTPGGFQCLCPPGFVLSDNGRRCFDTR
QSFCFTNFENGKCSVPKAFNTTKAKCCCSKMPGEGWGDPCELCPKDDEVAFQDLCPYGHG
TVPSLHDTREDVNECLESPGICSNGQCINTDGSFRCECPMGYNLDYTGVRCVDTDECSIG
NPCGNGTCTNVIGSFECNCNEGFEPGPMMNCEDINECAQNPLLCAFRCMNTFGSYECTCP
IGYALREDQKMCKDLDECAEGLHDCESRGMMCKNLIGTFMCICPPGMARRPDGEGCVDEN
ECRTKPGICENGRCVNIIGSYRCECNEGFQSSSSGTECLDNRQGLCFAEVLQTICQMASS
SRNLVTKSECCCDGGRGWGHQCELCPLPGTAQYKKICPHGPGYTTDGRDIDECKVMPNLC
TNGQCINTMGSFRCFCKVGYTTDISGTSCIDLDECSQSPKPCNYICKNTEGSYQCSCPRG
YVLQEDGKTCKDLDECQTKQHNCQFLCVNTLGGFTCKCPPGFTQHHTACIDNNECGSQPS
LCGAKGICQNTPGSFSCECQRGFSLDATGLNCEDVDECDGNHRCQHGCQNILGGYRCGCP
QGYIQHYQWNQCVDENECSNPNACGSASCYNTLGSYKCACPSGFSFDQFSSACHDVNECS
SSKNPCNYGCSNTEGGYLCGCPPGYYRVGQGHCVSGMGFNKGQYLSLDTEVDEENALSPE
ACYECKINGYSKKDSRQKRSIHEPDPTAVEQISLESVDMDSPVNMKFNLSHLGSKEHILE
LRPAIQPLNNHIRYVISQGNDDSVFRIHQRNGLSYLHTAKKKLMPGTYTLEITSIPLYKK
KELKKLEESNEDDYLLGELGEALRMRLQIQLY
Function
[Fibrillin-2]: Fibrillins are structural components of 10-12 nm extracellular calcium-binding microfibrils, which occur either in association with elastin or in elastin-free bundles. Fibrillin-2-containing microfibrils regulate the early process of elastic fiber assembly. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively; [Placensin]: Hormone secreted by trophoblasts that promotes trophoblast invasiveness. Has glucogenic activity: is able to increase plasma glucose levels.
Tissue Specificity
Almost exclusively expressed in placenta . Expressed at much lower level in other tissues . Expressed in fetal eye (18 weeks)in the retinal pigment epithelium (RPE), the choroid, Bruch's membrane and in the sclera . Not expressed in the neural retina .; [Placensin]: Present at high level in cytotrophoblasts as compared with syncytiotrophoblasts at 8-9 weeks of pregnancy (at protein level) . Levels in the serum increase during pregnancy (at protein level) .
KEGG Pathway
Cytoskeleton in muscle cells (hsa04820 )
Reactome Pathway
Elastic fibre formation (R-HSA-1566948 )
Molecules associated with elastic fibres (R-HSA-2129379 )
Degradation of the extracellular matrix (R-HSA-1474228 )

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arthrogryposis, distal, type 1A DISD8IKM Definitive Biomarker [1]
Arthrogryposis, distal, type 1B DISHXTV4 Definitive Biomarker [1]
Arthrogryposis- oculomotor limitation-electroretinal anomalies syndrome DISBCS1Y Definitive Biomarker [1]
Colon cancer DISVC52G Definitive Biomarker [2]
Colon carcinoma DISJYKUO Definitive Biomarker [2]
Congenital contractural arachnodactyly DISOM1K7 Definitive Autosomal dominant [3]
Distal arthrogryposis type 5D DISYDVKR Definitive Biomarker [1]
Freeman-Sheldon syndrome DIS7V9PS Definitive Biomarker [1]
Gordon syndrome DISVMP0Y Definitive Biomarker [1]
Sheldon-hall syndrome DISOCVMC Definitive Biomarker [1]
Trismus-pseudocamptodactyly syndrome DISZ2Y71 Definitive Biomarker [1]
Adenocarcinoma DIS3IHTY Strong Genetic Variation [4]
Advanced cancer DISAT1Z9 Strong Genetic Variation [5]
Androgen insensitivity syndrome DISUZBBO Strong Altered Expression [6]
Arteriosclerosis DISK5QGC Strong Biomarker [7]
Arthrogryposis DISC81CM Strong Genetic Variation [8]
Atherosclerosis DISMN9J3 Strong Biomarker [7]
Cardiovascular disease DIS2IQDX Strong Genetic Variation [9]
Cholangiocarcinoma DIS71F6X Strong Genetic Variation [10]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [11]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [2]
Connective tissue disorder DISKXBS3 Strong Genetic Variation [12]
Distal arthrogryposis DIS3QIEL Strong Biomarker [1]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Hereditary disorder of connective tissue DIS8I9FS Strong Genetic Variation [14]
Marfan syndrome DISVEUWZ Strong Genetic Variation [15]
Migraine disorder DISFCQTG Strong Genetic Variation [16]
Neoplasm DISZKGEW Strong Biomarker [17]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [9]
Primary sclerosing cholangitis DISTH5WJ Strong Biomarker [18]
Age-related macular degeneration DIS0XS2C moderate Genetic Variation [19]
Carcinoma DISH9F1N moderate Altered Expression [20]
Hepatobiliary disorder DISEW817 moderate Biomarker [5]
Type-1/2 diabetes DISIUHAP moderate Genetic Variation [21]
Colorectal neoplasm DISR1UCN Disputed Biomarker [22]
Lung cancer DISCM4YA Disputed Posttranslational Modification [23]
Lung carcinoma DISTR26C Disputed Posttranslational Modification [23]
Metastatic malignant neoplasm DIS86UK6 Disputed Biomarker [24]
Non-small-cell lung cancer DIS5Y6R9 Disputed Posttranslational Modification [23]
Carpal tunnel syndrome DISHQ3BE Limited Autosomal dominant [25]
Coronary heart disease DIS5OIP1 Limited Genetic Variation [26]
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Limited Autosomal dominant [27]
Hepatitis C virus infection DISQ0M8R Limited Biomarker [28]
Macular degeneration, early-onset DISLVC95 Limited Autosomal dominant [29]
Pancreatic cancer DISJC981 Limited Biomarker [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fibrillin-2 (FBN2). [31]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Fibrillin-2 (FBN2). [32]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Fibrillin-2 (FBN2). [33]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Fibrillin-2 (FBN2). [34]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Fibrillin-2 (FBN2). [35]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Fibrillin-2 (FBN2). [36]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Fibrillin-2 (FBN2). [37]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Fibrillin-2 (FBN2). [38]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Fibrillin-2 (FBN2). [39]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Fibrillin-2 (FBN2). [40]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Fibrillin-2 (FBN2). [41]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Fibrillin-2 (FBN2). [32]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Fibrillin-2 (FBN2). [42]
Guaiacol DMN4E7T Phase 3 Guaiacol decreases the expression of Fibrillin-2 (FBN2). [42]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Fibrillin-2 (FBN2). [42]
Puerarin DMJIMXH Phase 2 Puerarin decreases the expression of Fibrillin-2 (FBN2). [42]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Fibrillin-2 (FBN2). [43]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Fibrillin-2 (FBN2). [45]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Fibrillin-2 (FBN2). [47]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Fibrillin-2 (FBN2). [48]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Fibrillin-2 (FBN2). [49]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Fibrillin-2 (FBN2). [50]
Chlorogenic acid DM2Y3P4 Investigative Chlorogenic acid decreases the expression of Fibrillin-2 (FBN2). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Fibrillin-2 (FBN2). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Fibrillin-2 (FBN2). [46]
------------------------------------------------------------------------------------

References

1 ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.PLoS One. 2010 Feb 9;5(2):e9137. doi: 10.1371/journal.pone.0009137.
2 DNA methylation biomarker candidates for early detection of colon cancer.Tumour Biol. 2012 Apr;33(2):363-72. doi: 10.1007/s13277-011-0302-2. Epub 2012 Jan 12.
3 Two novel fibrillin-2 mutations in congenital contractural arachnodactyly. Am J Med Genet. 2000 May 1;92(1):7-12.
4 Clinicopathological and molecular characteristics of synchronous gastric adenocarcinoma and gastrointestinal stromal tumors.Sci Rep. 2017 Oct 10;7(1):12890. doi: 10.1038/s41598-017-12622-x.
5 Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues.Adv Parasitol. 2018;101:125-148. doi: 10.1016/bs.apar.2018.05.005. Epub 2018 Jun 6.
6 New Evidence Supporting the Role of FBN1 in the Development of Adolescent Idiopathic Scoliosis.Spine (Phila Pa 1976). 2019 Feb 15;44(4):E225-E232. doi: 10.1097/BRS.0000000000002809.
7 Healthy Lifestyle During the Midlife Is Prospectively Associated With Less Subclinical Carotid Atherosclerosis: The Study of Women's Health Across the Nation.J Am Heart Assoc. 2018 Dec 4;7(23):e010405. doi: 10.1161/JAHA.118.010405.
8 Exome sequencing reveals blended phenotype of double heterozygous FBN1 and FBN2 variants in a fetus.Eur J Med Genet. 2018 Jul;61(7):399-402. doi: 10.1016/j.ejmg.2018.02.009. Epub 2018 Mar 1.
9 Type 2 diabetes associated variants of KCNQ1 strongly confer the risk of cardiovascular disease among the Saudi Arabian population.Genet Mol Biol. 2017 Jul-Sep;40(3):586-590. doi: 10.1590/1678-4685-GMB-2017-0005. Epub 2017 Aug 31.
10 Clinical Characteristics, Associated Malignancies and Management of Primary Sclerosing Cholangitis in Inflammatory Bowel Disease Patients: A Multicentre Retrospective Cohort Study.J Crohns Colitis. 2019 Dec 10;13(12):1492-1500. doi: 10.1093/ecco-jcc/jjz094.
11 Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project.PLoS One. 2014 Jan 15;9(1):e85621. doi: 10.1371/journal.pone.0085621. eCollection 2014.
12 Establishment of a Beals syndrome patient-derived human induced pluripotent stem cell line HELPi001-A.Stem Cell Res. 2019 Oct;40:101535. doi: 10.1016/j.scr.2019.101535. Epub 2019 Aug 8.
13 Radiological features and outcomes ofcombined hepatocellular-cholangiocarcinoma inpatients undergoingsurgical resection.J Formos Med Assoc. 2020 Jan;119(1 Pt 1):125-133. doi: 10.1016/j.jfma.2019.02.012. Epub 2019 Mar 12.
14 Prenatal diagnosis in congenital contractural arachnodactyly.Genet Test. 1997-1998;1(4):293-6. doi: 10.1089/gte.1997.1.293.
15 Variant filtering, digenic variants, and other challenges in clinical sequencing: a lesson from fibrillinopathies.Clin Genet. 2020 Feb;97(2):235-245. doi: 10.1111/cge.13640. Epub 2019 Oct 1.
16 Genome-wide meta-analysis identifies new susceptibility loci for migraine.Nat Genet. 2013 Aug;45(8):912-917. doi: 10.1038/ng.2676. Epub 2013 Jun 23.
17 Combining imaging and tumour biopsy improves the diagnosis of combined hepatocellular-cholangiocarcinoma.Liver Int. 2019 Dec;39(12):2386-2396. doi: 10.1111/liv.14261. Epub 2019 Oct 20.
18 Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis.Hepatology. 2019 Aug;70(2):547-562. doi: 10.1002/hep.30319. Epub 2019 Feb 14.
19 Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Hum Mol Genet. 2014 Nov 1;23(21):5827-37. doi: 10.1093/hmg/ddu276. Epub 2014 Jun 4.
20 The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas.BMC Cancer. 2017 Jun 23;17(1):441. doi: 10.1186/s12885-017-3431-1.
21 The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel.Acta Diabetol. 2011 Sep;48(3):227-35. doi: 10.1007/s00592-011-0299-4. Epub 2011 May 25.
22 Genomic and epigenomic integration identifies a prognostic signature in colon cancer.Clin Cancer Res. 2011 Mar 15;17(6):1535-45. doi: 10.1158/1078-0432.CCR-10-2509. Epub 2011 Jan 28.
23 Aberrant methylation of FBN2 in human non-small cell lung cancer.Lung Cancer. 2005 Oct;50(1):43-9. doi: 10.1016/j.lungcan.2005.04.013.
24 Up-regulated LINC00261 predicts a poor prognosis and promotes a metastasis by EMT process in cholangiocarcinoma.Pathol Res Pract. 2020 Jan;216(1):152733. doi: 10.1016/j.prp.2019.152733. Epub 2019 Nov 11.
25 Delineation of a new fibrillin-2-opathy with evidence for a role of FBN2 in the pathogenesis of carpal tunnel syndrome. J Med Genet. 2021 Nov;58(11):778-782. doi: 10.1136/jmedgenet-2020-107085. Epub 2020 Sep 8.
26 A novel association between TGFb1 and ADAMTS4 in coronary artery disease: A new potential mechanism in the progression of atherosclerosis and diabetes.Anatol J Cardiol. 2015 Oct;15(10):823-9. doi: 10.5152/akd.2014.5762. Epub 2014 Oct 31.
27 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
28 Single nucleotide polymorphisms of toll-like receptor 7 in hepatitis C virus infection patients from a high-risk chinese population.Inflammation. 2015 Feb;38(1):142-51. doi: 10.1007/s10753-014-0016-x.
29 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
30 Discovery of glycocholic acid and taurochenodeoxycholic acid as phenotypic biomarkers in cholangiocarcinoma.Sci Rep. 2018 Jul 23;8(1):11088. doi: 10.1038/s41598-018-29445-z.
31 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
32 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
33 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
34 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
35 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
36 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
37 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
38 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
39 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
40 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
41 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
42 Examining the genomic influence of skin antioxidants in vitro. Mediators Inflamm. 2010;2010.
43 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
44 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
45 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
46 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
47 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
48 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
49 Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol. 2018 Feb;92(2):995-1014.
50 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.