General Information of Drug Off-Target (DOT) (ID: OT8ALXHU)

DOT Name Pirin (PIR)
Synonyms EC 1.13.11.24; Probable quercetin 2,3-dioxygenase PIR; Probable quercetinase
Gene Name PIR
Related Disease
Arthritis ( )
Acute monocytic leukemia ( )
Acute myelogenous leukaemia ( )
Castration-resistant prostate carcinoma ( )
Chronic obstructive pulmonary disease ( )
Colitis ( )
Inflammatory bowel disease ( )
Melanoma ( )
Neoplasm ( )
Promyelocytic leukaemia ( )
Pulmonary disease ( )
Breast cancer ( )
Breast carcinoma ( )
Advanced cancer ( )
Contact dermatitis ( )
Osteoporosis ( )
Rheumatoid arthritis ( )
UniProt ID
PIR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1J1L; 3ACL; 4ERO; 4EWA; 4EWD; 4EWE; 4GUL; 4HLT; 5JCT; 6H1H; 6H1I; 6N0J; 6N0K
EC Number
1.13.11.24
Pfam ID
PF02678 ; PF05726
Sequence
MGSSKKVTLSVLSREQSEGVGARVRRSIGRPELKNLDPFLLFDEFKGGRPGGFPDHPHRG
FETVSYLLEGGSMAHEDFCGHTGKMNPGDLQWMTAGRGILHAEMPCSEEPAHGLQLWVNL
RSSEKMVEPQYQELKSEEIPKPSKDGVTVAVISGEALGIKSKVYTRTPTLYLDFKLDPGA
KHSQPIPKGWTSFIYTISGDVYIGPDDAQQKIEPHHTAVLGEGDSVQVENKDPKRSHFVL
IAGEPLREPVIQHGPFVMNTNEEISQAILDFRNAKNGFERAKTWKSKIGN
Function
Transcriptional coregulator of NF-kappa-B which facilitates binding of NF-kappa-B proteins to target kappa-B genes in a redox-state-dependent manner. May be required for efficient terminal myeloid maturation of hematopoietic cells. Has quercetin 2,3-dioxygenase activity (in vitro).
Tissue Specificity Highly expressed in a subset of melanomas. Detected at very low levels in most tissues (at protein level). Expressed in all tissues, with highest level of expression in heart and liver.
Reactome Pathway
Digestion (R-HSA-8935690 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arthritis DIST1YEL Definitive Genetic Variation [1]
Acute monocytic leukemia DIS28NEL Strong Altered Expression [2]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [2]
Castration-resistant prostate carcinoma DISVGAE6 Strong Altered Expression [3]
Chronic obstructive pulmonary disease DISQCIRF Strong Biomarker [4]
Colitis DISAF7DD Strong Biomarker [5]
Inflammatory bowel disease DISGN23E Strong Biomarker [5]
Melanoma DIS1RRCY Strong Biomarker [6]
Neoplasm DISZKGEW Strong Biomarker [7]
Promyelocytic leukaemia DISYGG13 Strong Altered Expression [2]
Pulmonary disease DIS6060I Strong Biomarker [4]
Breast cancer DIS7DPX1 moderate Biomarker [7]
Breast carcinoma DIS2UE88 moderate Biomarker [7]
Advanced cancer DISAT1Z9 Limited Biomarker [3]
Contact dermatitis DISQ3AU0 Limited Biomarker [8]
Osteoporosis DISF2JE0 Limited Biomarker [9]
Rheumatoid arthritis DISTSB4J Limited Altered Expression [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Pirin (PIR) affects the response to substance of Doxorubicin. [40]
Mitomycin DMH0ZJE Approved Pirin (PIR) affects the response to substance of Mitomycin. [40]
Vinblastine DM5TVS3 Approved Pirin (PIR) affects the response to substance of Vinblastine. [40]
------------------------------------------------------------------------------------
35 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Pirin (PIR). [11]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Pirin (PIR). [12]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Pirin (PIR). [13]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Pirin (PIR). [14]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Pirin (PIR). [15]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Pirin (PIR). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Pirin (PIR). [17]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Pirin (PIR). [18]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Pirin (PIR). [19]
Marinol DM70IK5 Approved Marinol increases the expression of Pirin (PIR). [20]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Pirin (PIR). [21]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Pirin (PIR). [22]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Pirin (PIR). [23]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Pirin (PIR). [24]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Pirin (PIR). [25]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Pirin (PIR). [21]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Pirin (PIR). [21]
Alitretinoin DMME8LH Approved Alitretinoin increases the expression of Pirin (PIR). [13]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of Pirin (PIR). [21]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Pirin (PIR). [26]
Penicillin V DMKVOYF Approved Penicillin V increases the expression of Pirin (PIR). [26]
Sulfamethoxazole DMB08GE Approved Sulfamethoxazole increases the expression of Pirin (PIR). [26]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Pirin (PIR). [27]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Pirin (PIR). [28]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Pirin (PIR). [29]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of Pirin (PIR). [30]
Benzylpenicillin DMS9503 Phase 3 Benzylpenicillin increases the expression of Pirin (PIR). [26]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Pirin (PIR). [31]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Pirin (PIR). [33]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Pirin (PIR). [35]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Pirin (PIR). [36]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Pirin (PIR). [37]
all-trans-4-oxo-retinoic acid DMM2R1N Investigative all-trans-4-oxo-retinoic acid increases the expression of Pirin (PIR). [13]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Pirin (PIR). [38]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE increases the expression of Pirin (PIR). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Pirin (PIR). [32]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Pirin (PIR). [34]
------------------------------------------------------------------------------------

References

1 Autoimmune arthritis induces paired immunoglobulin-like receptor B expression on CD4(+) Tcells from SKG mice.Eur J Immunol. 2017 Sep;47(9):1457-1467. doi: 10.1002/eji.201646747. Epub 2017 Jul 27.
2 Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation.Leukemia. 2010 Feb;24(2):429-37. doi: 10.1038/leu.2009.247. Epub 2009 Dec 10.
3 Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p.Mol Oncol. 2019 Feb;13(2):322-337. doi: 10.1002/1878-0261.12405. Epub 2018 Dec 21.
4 Ambient particulate matter attenuates Sirtuin1 and augments SREBP1-PIR axis to induce human pulmonary fibroblast inflammation: molecular mechanism of microenvironment associated with COPD.Aging (Albany NY). 2019 Jul 12;11(13):4654-4671. doi: 10.18632/aging.102077.
5 Induction of PIR-A/B(+) DCs in the in vitro inflammatory condition and their immunoregulatory function.J Gastroenterol. 2018 Oct;53(10):1131-1141. doi: 10.1007/s00535-018-1447-1. Epub 2018 Mar 5.
6 A small-molecule inhibitor shows that pirin regulates migration of melanoma cells.Nat Chem Biol. 2010 Sep;6(9):667-73. doi: 10.1038/nchembio.423. Epub 2010 Aug 15.
7 PIR promotes tumorigenesis of breast cancer by upregulating cell cycle activator E2F1.Cell Cycle. 2019 Nov;18(21):2914-2927. doi: 10.1080/15384101.2019.1662259. Epub 2019 Sep 10.
8 Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin modelDevelopment of the SENS-IS assay. Toxicol In Vitro. 2015 Jun;29(4):787-802.
9 Sex-specific effect of Pirin gene on bone mineral density in a cohort of 4000 Chinese.Bone. 2010 Feb;46(2):543-50. doi: 10.1016/j.bone.2009.09.012. Epub 2009 Sep 18.
10 Proteins related to the functions of fibroblast-like synoviocytes identified by proteomic analysis.Clin Exp Rheumatol. 2012 Mar-Apr;30(2):213-21. Epub 2012 Apr 13.
11 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
12 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
13 Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J Invest Dermatol. 2005 Jul;125(1):143-53.
14 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
15 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
16 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
17 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
18 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
19 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
20 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
21 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
22 Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer. 2004 Nov 1;112(2):200-12. doi: 10.1002/ijc.20401.
23 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
24 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
25 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
26 Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte-derived dendritic cells. Toxicol Appl Pharmacol. 2012 Aug 1;262(3):283-92.
27 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
28 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
29 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
30 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
31 MIP-1beta, a novel biomarker for in vitro sensitization test using human monocytic cell line. Toxicol In Vitro. 2006 Aug;20(5):736-42.
32 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
33 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
34 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
35 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
36 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
37 Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):273-83.
38 Analysis of lead toxicity in human cells. BMC Genomics. 2012 Jul 27;13:344.
39 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
40 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.