General Information of Drug Off-Target (DOT) (ID: OTD1RZAD)

DOT Name Nucleosome-remodeling factor subunit BPTF (BPTF)
Synonyms Bromodomain and PHD finger-containing transcription factor; Fetal Alz-50 clone 1 protein; Fetal Alzheimer antigen
Gene Name BPTF
Related Disease
Lung adenocarcinoma ( )
Syndromic intellectual disability ( )
Acute megakaryoblastic leukemia ( )
Alzheimer disease ( )
Bladder cancer ( )
Breast neoplasm ( )
Cataract ( )
Childhood acute megakaryoblastic leukemia ( )
Chronic diarrhoea ( )
Colorectal carcinoma ( )
Constipation ( )
Cystic fibrosis ( )
Esophageal squamous cell carcinoma ( )
Exocrine pancreatic insufficiency ( )
Glioma ( )
Hepatocellular carcinoma ( )
Intellectual disability ( )
Lung cancer ( )
Microcephaly ( )
Myopia ( )
Neoplasm ( )
Neurodevelopmental disorder ( )
Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies ( )
Non-small-cell lung cancer ( )
Patent ductus arteriosus ( )
Telecanthus ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Endometrial carcinoma ( )
Isolated congenital microcephaly ( )
Neuroblastoma ( )
Advanced cancer ( )
Kennedy disease ( )
Melanoma ( )
Psoriasis ( )
UniProt ID
BPTF_HUMAN
PDB ID
2F6J ; 2F6N ; 2FSA ; 2FUI ; 2FUU ; 2RI7 ; 3QZS ; 3QZT ; 3QZV ; 3UV2 ; 5H6Y ; 5R4G ; 5R4H ; 5R4I ; 5R4J ; 5R4K ; 5R4L ; 5R4M ; 5R4N ; 5R4O ; 6AZE ; 6LU5 ; 6LU6 ; 7DMY ; 7DN4 ; 7F5D ; 7F5E ; 7JT4 ; 7K6R ; 7K6S ; 7KDW ; 7KDZ ; 7LP0 ; 7LPK ; 7LRK ; 7LRO ; 7M2E ; 7RWN ; 7RWO ; 7RWP ; 7RWQ ; 7VD4 ; 8AG2
Pfam ID
PF00439 ; PF02791 ; PF00628 ; PF15613
Sequence
MRGRRGRPPKQPAAPAAERCAPAPPPPPPPPTSGPIGGLRSRHRGSSRGRWAAAQAEVAP
KTRLSSPRGGSSSRRKPPPPPPAPPSTSAPGRGGRGGGGGRTGGGGGGGHLARTTAARRA
VNKVVYDDHESEEEEEEEDMVSEEEEEEDGDAEETQDSEDDEEDEMEEDDDDSDYPEEME
DDDDDASYCTESSFRSHSTYSSTPGRRKPRVHRPRSPILEEKDIPPLEFPKSSEDLMVPN
EHIMNVIAIYEVLRNFGTVLRLSPFRFEDFCAALVSQEQCTLMAEMHVVLLKAVLREEDT
SNTTFGPADLKDSVNSTLYFIDGMTWPEVLRVYCESDKEYHHVLPYQEAEDYPYGPVENK
IKVLQFLVDQFLTTNIAREELMSEGVIQYDDHCRVCHKLGDLLCCETCSAVYHLECVKPP
LEEVPEDEWQCEVCVAHKVPGVTDCVAEIQKNKPYIRHEPIGYDRSRRKYWFLNRRLIIE
EDTENENEKKIWYYSTKVQLAELIDCLDKDYWEAELCKILEEMREEIHRHMDITEDLTNK
ARGSNKSFLAAANEEILESIRAKKGDIDNVKSPEETEKDKNETENDSKDAEKNREEFEDQ
SLEKDSDDKTPDDDPEQGKSEEPTEVGDKGNSVSANLGDNTTNATSEETSPSEGRSPVGC
LSETPDSSNMAEKKVASELPQDVPEEPNKTCESSNTSATTTSIQPNLENSNSSSELNSSQ
SESAKAADDPENGERESHTPVSIQEEIVGDFKSEKSNGELSESPGAGKGASGSTRIITRL
RNPDSKLSQLKSQQVAAAAHEANKLFKEGKEVLVVNSQGEISRLSTKKEVIMKGNINNYF
KLGQEGKYRVYHNQYSTNSFALNKHQHREDHDKRRHLAHKFCLTPAGEFKWNGSVHGSKV
LTISTLRLTITQLENNIPSSFLHPNWASHRANWIKAVQMCSKPREFALALAILECAVKPV
VMLPIWRESLGHTRLHRMTSIEREEKEKVKKKEKKQEEEETMQQATWVKYTFPVKHQVWK
QKGEEYRVTGYGGWSWISKTHVYRFVPKLPGNTNVNYRKSLEGTKNNMDENMDESDKRKC
SRSPKKIKIEPDSEKDEVKGSDAAKGADQNEMDISKITEKKDQDVKELLDSDSDKPCKEE
PMEVDDDMKTESHVNCQESSQVDVVNVSEGFHLRTSYKKKTKSSKLDGLLERRIKQFTLE
EKQRLEKIKLEGGIKGIGKTSTNSSKNLSESPVITKAKEGCQSDSMRQEQSPNANNDQPE
DLIQGCSESDSSVLRMSDPSHTTNKLYPKDRVLDDVSIRSPETKCPKQNSIENDIEEKVS
DLASRGQEPSKSKTKGNDFFIDDSKLASADDIGTLICKNKKPLIQEESDTIVSSSKSALH
SSVPKSTNDRDATPLSRAMDFEGKLGCDSESNSTLENSSDTVSIQDSSEEDMIVQNSNES
ISEQFRTREQDVEVLEPLKCELVSGESTGNCEDRLPVKGTEANGKKPSQQKKLEERPVNK
CSDQIKLKNTTDKKNNENRESEKKGQRTSTFQINGKDNKPKIYLKGECLKEISESRVVSG
NVEPKVNNINKIIPENDIKSLTVKESAIRPFINGDVIMEDFNERNSSETKSHLLSSSDAE
GNYRDSLETLPSTKESDSTQTTTPSASCPESNSVNQVEDMEIETSEVKKVTSSPITSEEE
SNLSNDFIDENGLPINKNENVNGESKRKTVITEVTTMTSTVATESKTVIKVEKGDKQTVV
SSTENCAKSTVTTTTTTVTKLSTPSTGGSVDIISVKEQSKTVVTTTVTDSLTTTGGTLVT
SMTVSKEYSTRDKVKLMKFSRPKKTRSGTALPSYRKFVTKSSKKSIFVLPNDDLKKLARK
GGIREVPYFNYNAKPALDIWPYPSPRPTFGITWRYRLQTVKSLAGVSLMLRLLWASLRWD
DMAAKAPPGGGTTRTETSETEITTTEIIKRRDVGPYGIRSEYCIRKIICPIGVPETPKET
PTPQRKGLRSSALRPKRPETPKQTGPVIIETWVAEEELELWEIRAFAERVEKEKAQAVEQ
QAKKRLEQQKPTVIATSTTSPTSSTTSTISPAQKVMVAPISGSVTTGTKMVLTTKVGSPA
TVTFQQNKNFHQTFATWVKQGQSNSGVVQVQQKVLGIIPSSTGTSQQTFTSFQPRTATVT
IRPNTSGSGGTTSNSQVITGPQIRPGMTVIRTPLQQSTLGKAIIRTPVMVQPGAPQQVMT
QIIRGQPVSTAVSAPNTVSSTPGQKSLTSATSTSNIQSSASQPPRPQQGQVKLTMAQLTQ
LTQGHGGNQGLTVVIQGQGQTTGQLQLIPQGVTVLPGPGQQLMQAAMPNGTVQRFLFTPL
ATTATTASTTTTTVSTTAAGTGEQRQSKLSPQMQVHQDKTLPPAQSSSVGPAEAQPQTAQ
PSAQPQPQTQPQSPAQPEVQTQPEVQTQTTVSSHVPSEAQPTHAQSSKPQVAAQSQPQSN
VQGQSPVRVQSPSQTRIRPSTPSQLSPGQQSQVQTTTSQPIPIQPHTSLQIPSQGQPQSQ
PQVQSSTQTLSSGQTLNQVTVSSPSRPQLQIQQPQPQVIAVPQLQQQVQVLSQIQSQVVA
QIQAQQSGVPQQIKLQLPIQIQQSSAVQTHQIQNVVTVQAASVQEQLQRVQQLRDQQQKK
KQQQIEIKREHTLQASNQSEIIQKQVVMKHNAVIEHLKQKKSMTPAEREENQRMIVCNQV
MKYILDKIDKEEKQAAKKRKREESVEQKRSKQNATKLSALLFKHKEQLRAEILKKRALLD
KDLQIEVQEELKRDLKIKKEKDLMQLAQATAVAAPCPPVTPAPPAPPAPPPSPPPPPAVQ
HTGLLSTPTLPAASQKRKREEEKDSSSKSKKKKMISTTSKETKKDTKLYCICKTPYDESK
FYIGCDRCQNWYHGRCVGILQSEAELIDEYVCPQCQSTEDAMTVLTPLTEKDYEGLKRVL
RSLQAHKMAWPFLEPVDPNDAPDYYGVIKEPMDLATMEERVQRRYYEKLTEFVADMTKIF
DNCRYYNPSDSPFYQCAEVLESFFVQKLKGFKASRSHNNKLQSTAS
Function
Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair. The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex. Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development. Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes. Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent. May also regulate transcription through direct binding to DNA or transcription factors.
Tissue Specificity Ubiquitously expressed, with highest levels in testis. Present in kidney, liver and brain. In the brain, highest levels are found in motor cortex (at protein level).
KEGG Pathway
ATP-dependent chromatin remodeling (hsa03082 )

Molecular Interaction Atlas (MIA) of This DOT

35 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Lung adenocarcinoma DISD51WR Definitive Biomarker [1]
Syndromic intellectual disability DISH7SDF Definitive Autosomal dominant [2]
Acute megakaryoblastic leukemia DIS0JX3M Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
Bladder cancer DISUHNM0 Strong Biomarker [5]
Breast neoplasm DISNGJLM Strong Altered Expression [6]
Cataract DISUD7SL Strong CausalMutation [7]
Childhood acute megakaryoblastic leukemia DIS5VZDR Strong Biomarker [3]
Chronic diarrhoea DISH3PX3 Strong Genetic Variation [7]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [8]
Constipation DISRQXWI Strong CausalMutation [7]
Cystic fibrosis DIS2OK1Q Strong Biomarker [9]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [10]
Exocrine pancreatic insufficiency DISCZYU2 Strong Genetic Variation [7]
Glioma DIS5RPEH Strong Altered Expression [11]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [12]
Intellectual disability DISMBNXP Strong Biomarker [7]
Lung cancer DISCM4YA Strong Biomarker [1]
Microcephaly DIS2GRD8 Strong Genetic Variation [7]
Myopia DISK5S60 Strong CausalMutation [7]
Neoplasm DISZKGEW Strong Biomarker [13]
Neurodevelopmental disorder DIS372XH Strong Biomarker [14]
Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies DIS3U21R Strong Autosomal dominant [15]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [16]
Patent ductus arteriosus DIS9P8YS Strong CausalMutation [7]
Telecanthus DISKPIOJ Strong CausalMutation [7]
Urinary bladder cancer DISDV4T7 Strong Biomarker [5]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [5]
Endometrial carcinoma DISXR5CY moderate Genetic Variation [17]
Isolated congenital microcephaly DISUXHZ6 moderate Genetic Variation [7]
Neuroblastoma DISVZBI4 moderate Biomarker [18]
Advanced cancer DISAT1Z9 Limited Biomarker [19]
Kennedy disease DISXZVM1 Limited Biomarker [20]
Melanoma DIS1RRCY Limited Altered Expression [21]
Psoriasis DIS59VMN Limited Genetic Variation [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [23]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [24]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [25]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [26]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [27]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [28]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [29]
Quercetin DM3NC4M Approved Quercetin increases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [30]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [31]
Marinol DM70IK5 Approved Marinol increases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [32]
Selenium DM25CGV Approved Selenium decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [33]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [34]
Tamibarotene DM3G74J Phase 3 Tamibarotene affects the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [35]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [33]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [38]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [40]
crotylaldehyde DMTWRQI Investigative crotylaldehyde decreases the expression of Nucleosome-remodeling factor subunit BPTF (BPTF). [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Nucleosome-remodeling factor subunit BPTF (BPTF). [36]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Nucleosome-remodeling factor subunit BPTF (BPTF). [37]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Nucleosome-remodeling factor subunit BPTF (BPTF). [39]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Nucleosome-remodeling factor subunit BPTF (BPTF). [37]
------------------------------------------------------------------------------------

References

1 MicroRNA-3666 inhibits lung cancer cell proliferation, migration, and invasiveness by targeting BPTF.Biochem Cell Biol. 2019 Aug;97(4):415-422. doi: 10.1139/bcb-2018-0301. Epub 2018 Nov 27.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 NUP98-BPTF gene fusion identified in primary refractory acute megakaryoblastic leukemia of infancy.Genes Chromosomes Cancer. 2018 Jun;57(6):311-319. doi: 10.1002/gcc.22532. Epub 2018 Mar 28.
4 Fetal Alz-50 clone 1 (FAC1) protein interacts with the Myc-associated zinc finger protein (ZF87/MAZ) and alters its transcriptional activity.Biochemistry. 2000 Mar 28;39(12):3206-15. doi: 10.1021/bi992211q.
5 Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis.Aging (Albany NY). 2018 Aug 9;10(8):1964-1976. doi: 10.18632/aging.101520.
6 Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes.Nat Commun. 2019 Jul 5;10(1):2983. doi: 10.1038/s41467-019-11020-3.
7 Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet. 2017 Oct 5;101(4):503-515. doi: 10.1016/j.ajhg.2017.08.014. Epub 2017 Sep 21.
8 The prognostic significance of bromodomain PHD-finger transcription factor in colorectal carcinoma and association with vimentin and E-cadherin.J Cancer Res Clin Oncol. 2015 Aug;141(8):1465-74. doi: 10.1007/s00432-015-1937-y. Epub 2015 Feb 26.
9 Carrier frequency of autosomal-recessive disorders in the Ashkenazi Jewish population: should the rationale for mutation choice for screening be reevaluated?.Prenat Diagn. 2008 Mar;28(3):236-41. doi: 10.1002/pd.1943.
10 Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma.Cancer Lett. 2018 Aug 28;430:57-66. doi: 10.1016/j.canlet.2018.05.013. Epub 2018 May 12.
11 Bromodomain PHDfinger transcription factor promotes glioma progression and indicates poor prognosis.Oncol Rep. 2019 Jan;41(1):246-256. doi: 10.3892/or.2018.6832. Epub 2018 Oct 30.
12 BPTF promotes hepatocellular carcinoma growth by modulating hTERT signaling and cancer stem cell traits.Redox Biol. 2019 Jan;20:427-441. doi: 10.1016/j.redox.2018.10.018. Epub 2018 Oct 25.
13 BPTF regulates growth of adult and pediatric high-grade glioma through the MYC pathway.Oncogene. 2020 Mar;39(11):2305-2327. doi: 10.1038/s41388-019-1125-7. Epub 2019 Dec 16.
14 Association of 17q24.2-q24.3 deletions with recognizable phenotype and short telomeres.Am J Med Genet A. 2018 Jun;176(6):1438-1442. doi: 10.1002/ajmg.a.38711. Epub 2018 Apr 25.
15 Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases. Genet Med. 2017 Feb;19(2):224-235. doi: 10.1038/gim.2016.95. Epub 2016 Aug 11.
16 Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer.Front Med. 2020 Feb;14(1):60-67. doi: 10.1007/s11684-019-0694-8. Epub 2019 May 18.
17 Identification of nine new susceptibility loci for endometrial cancer.Nat Commun. 2018 Aug 9;9(1):3166. doi: 10.1038/s41467-018-05427-7.
18 DNA binding activity of the fetal Alz-50 clone 1 (FAC1) protein is enhanced by phosphorylation.Biochem Biophys Res Commun. 1999 Jul 14;260(3):785-9. doi: 10.1006/bbrc.1999.0986.
19 Discovery of alkoxy benzamide derivatives as novel BPTF bromodomain inhibitors via structure-based virtual screening.Bioorg Chem. 2019 May;86:494-500. doi: 10.1016/j.bioorg.2019.01.035. Epub 2019 Jan 28.
20 BPTF inhibits NK cell activity and the abundance of natural cytotoxicity receptor co-ligands.Oncotarget. 2017 May 12;8(38):64344-64357. doi: 10.18632/oncotarget.17834. eCollection 2017 Sep 8.
21 BPTF transduces MITF-driven prosurvival signals in melanoma cells.Proc Natl Acad Sci U S A. 2016 May 31;113(22):6254-8. doi: 10.1073/pnas.1606027113. Epub 2016 May 16.
22 Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis.Nat Commun. 2015 Apr 9;6:6793. doi: 10.1038/ncomms7793.
23 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
24 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
25 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
26 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
27 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
28 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
29 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
30 Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells. Exp Eye Res. 2009 Dec;89(6):995-1002. doi: 10.1016/j.exer.2009.08.011. Epub 2009 Sep 1.
31 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
32 Delta9-tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol Hum Reprod. 2006 May;12(5):321-33. doi: 10.1093/molehr/gal036. Epub 2006 Apr 5.
33 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
34 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
35 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
36 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
37 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
38 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
39 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
40 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
41 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.