General Information of Drug Off-Target (DOT) (ID: OTDCNTC3)

DOT Name Tyrosine-protein phosphatase non-receptor type 22 (PTPN22)
Synonyms EC 3.1.3.48; Hematopoietic cell protein-tyrosine phosphatase 70Z-PEP; Lymphoid phosphatase; LyP; PEST-domain phosphatase; PEP
Gene Name PTPN22
Related Disease
Addison disease ( )
Classic Hodgkin lymphoma ( )
Advanced cancer ( )
Alopecia ( )
Alopecia areata ( )
Ankylosing spondylitis ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Autoimmune disease, susceptibility to, 6 ( )
Autoimmune hepatitis ( )
Breast cancer ( )
Breast carcinoma ( )
Endometriosis ( )
Giant cell arteritis ( )
HIV infectious disease ( )
Hypothyroidism ( )
Immune system disorder ( )
Juvenile idiopathic arthritis ( )
Lupus ( )
Myasthenia gravis ( )
Myositis disease ( )
Obesity ( )
Parkinson disease ( )
Pulmonary tuberculosis ( )
Rabies ( )
STAT3-related early-onset multisystem autoimmune disease ( )
Tuberculosis ( )
Arthritis ( )
Asthma ( )
Purpura ( )
Arrhythmia ( )
Basal cell carcinoma ( )
Basal cell neoplasm ( )
Colitis ( )
Polymyositis ( )
Rheumatoid arthritis ( )
Sclerosing cholangitis ( )
Stroke ( )
Triple negative breast cancer ( )
Type 1 diabetes mellitus 1 ( )
Vitiligo ( )
UniProt ID
PTN22_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2P6X; 2QCJ; 2QCT; 3BRH; 3H2X; 3OLR; 3OMH; 4J51; 7AAM
EC Number
3.1.3.48
Pfam ID
PF00102
Sequence
MDQREILQKFLDEAQSKKITKEEFANEFLKLKRQSTKYKADKTYPTTVAEKPKNIKKNRY
KDILPYDYSRVELSLITSDEDSSYINANFIKGVYGPKAYIATQGPLSTTLLDFWRMIWEY
SVLIIVMACMEYEMGKKKCERYWAEPGEMQLEFGPFSVSCEAEKRKSDYIIRTLKVKFNS
ETRTIYQFHYKNWPDHDVPSSIDPILELIWDVRCYQEDDSVPICIHCSAGCGRTGVICAI
DYTWMLLKDGIIPENFSVFSLIREMRTQRPSLVQTQEQYELVYNAVLELFKRQMDVIRDK
HSGTESQAKHCIPEKNHTLQADSYSPNLPKSTTKAAKMMNQQRTKMEIKESSSFDFRTSE
ISAKEELVLHPAKSSTSFDFLELNYSFDKNADTTMKWQTKAFPIVGEPLQKHQSLDLGSL
LFEGCSNSKPVNAAGRYFNSKVPITRTKSTPFELIQQRETKEVDSKENFSYLESQPHDSC
FVEMQAQKVMHVSSAELNYSLPYDSKHQIRNASNVKHHDSSALGVYSYIPLVENPYFSSW
PPSGTSSKMSLDLPEKQDGTVFPSSLLPTSSTSLFSYYNSHDSLSLNSPTNISSLLNQES
AVLATAPRIDDEIPPPLPVRTPESFIVVEEAGEFSPNVPKSLSSAVKVKIGTSLEWGGTS
EPKKFDDSVILRPSKSVKLRSPKSELHQDRSSPPPPLPERTLESFFLADEDCMQAQSIET
YSTSYPDTMENSTSSKQTLKTPGKSFTRSKSLKILRNMKKSICNSCPPNKPAESVQSNNS
SSFLNFGFANRFSKPKGPRNPPPTWNI
Function
Acts as a negative regulator of T-cell receptor (TCR) signaling by direct dephosphorylation of the Src family kinases LCK and FYN, ITAMs of the TCRz/CD3 complex, as well as ZAP70, VAV, VCP and other key signaling molecules. Associates with and probably dephosphorylates CBL. Dephosphorylates LCK at its activating 'Tyr-394' residue. Dephosphorylates ZAP70 at its activating 'Tyr-493' residue. Dephosphorylates the immune system activator SKAP2. Positively regulates toll-like receptor (TLR)-induced type 1 interferon production. Promotes host antiviral responses mediated by type 1 interferon. Regulates NOD2-induced pro-inflammatory cytokine secretion and autophagy. Acts as an activator of NLRP3 inflammasome assembly by mediating dephosphorylation of 'Tyr-861' of NLRP3. Dephosphorylates phospho-anandamide (p-AEA), an endocannabinoid to anandamide (also called N-arachidonoylethanolamide).
Tissue Specificity
Expressed in bone marrow, B and T-cells, PBMCs, natural killer cells, monocytes, dendritic cells and neutrophils . Both isoform 1 and 4 are predominantly expressed in lymphoid tissues and cells. Isoform 1 is expressed in thymocytes and both mature B and T-cells.
Reactome Pathway
Translocation of ZAP-70 to Immunological synapse (R-HSA-202430 )
Phosphorylation of CD3 and TCR zeta chains (R-HSA-202427 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Addison disease DIS7HNOH Definitive Genetic Variation [1]
Classic Hodgkin lymphoma DISV1LU6 Definitive Genetic Variation [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Alopecia DIS37HU4 Strong Genetic Variation [4]
Alopecia areata DIS0XXBJ Strong Genetic Variation [4]
Ankylosing spondylitis DISRC6IR Strong Genetic Variation [5]
Arteriosclerosis DISK5QGC Strong Biomarker [6]
Atherosclerosis DISMN9J3 Strong Biomarker [6]
Autoimmune disease, susceptibility to, 6 DISHNUXI Strong Genetic Variation [7]
Autoimmune hepatitis DISOX03Q Strong Genetic Variation [8]
Breast cancer DIS7DPX1 Strong Biomarker [3]
Breast carcinoma DIS2UE88 Strong Biomarker [3]
Endometriosis DISX1AG8 Strong Genetic Variation [9]
Giant cell arteritis DISSP87T Strong SusceptibilityMutation [10]
HIV infectious disease DISO97HC Strong Biomarker [11]
Hypothyroidism DISR0H6D Strong Genetic Variation [7]
Immune system disorder DISAEGPH Strong Biomarker [12]
Juvenile idiopathic arthritis DISQZGBV Strong Genetic Variation [13]
Lupus DISOKJWA Strong Biomarker [14]
Myasthenia gravis DISELRCI Strong Genetic Variation [15]
Myositis disease DISCIXF0 Strong Genetic Variation [16]
Obesity DIS47Y1K Strong Genetic Variation [17]
Parkinson disease DISQVHKL Strong Biomarker [18]
Pulmonary tuberculosis DIS6FLUM Strong Genetic Variation [19]
Rabies DISSC4V5 Strong Biomarker [20]
STAT3-related early-onset multisystem autoimmune disease DISAXTN7 Strong Genetic Variation [7]
Tuberculosis DIS2YIMD Strong Genetic Variation [21]
Arthritis DIST1YEL moderate Genetic Variation [22]
Asthma DISW9QNS moderate Genetic Variation [23]
Purpura DISWPOOE moderate Genetic Variation [24]
Arrhythmia DISFF2NI Limited Genetic Variation [25]
Basal cell carcinoma DIS7PYN3 Limited Genetic Variation [26]
Basal cell neoplasm DIS37IXW Limited Genetic Variation [26]
Colitis DISAF7DD Limited Biomarker [27]
Polymyositis DIS5DHFP Limited Genetic Variation [28]
Rheumatoid arthritis DISTSB4J Limited Unknown [29]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [30]
Stroke DISX6UHX Limited Biomarker [31]
Triple negative breast cancer DISAMG6N Limited Biomarker [32]
Type 1 diabetes mellitus 1 DIS3Y2GA Limited Autosomal recessive [29]
Vitiligo DISR05SL Limited Genetic Variation [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [34]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [35]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [37]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [38]
Folic acid DMEMBJC Approved Folic acid affects the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [39]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [40]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [41]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [42]
Clorgyline DMCEUJD Approved Clorgyline increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [43]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [45]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [46]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [36]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tyrosine-protein phosphatase non-receptor type 22 (PTPN22). [44]
------------------------------------------------------------------------------------

References

1 Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue.Genes Immun. 2012 Dec;13(8):641-52. doi: 10.1038/gene.2012.46. Epub 2012 Oct 18.
2 Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma.Blood. 2018 Nov 8;132(19):2040-2052. doi: 10.1182/blood-2018-06-855296. Epub 2018 Sep 7.
3 Efficacy of a novel LyP-1-containing self-microemulsifying drug delivery system (SMEDDS) for active targeting to breast cancer.Eur J Pharm Biopharm. 2019 Mar;136:138-146. doi: 10.1016/j.ejpb.2019.01.017. Epub 2019 Jan 22.
4 The association between rs2476601 polymorphism in PTPN22 gene and risk of alopecia areata: A meta-analysis of case-control studies.Medicine (Baltimore). 2019 May;98(20):e15448. doi: 10.1097/MD.0000000000015448.
5 Association Between Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Polymorphisms and Risk of Ankylosing Spondylitis: A Meta-analysis.Med Sci Monit. 2017 May 30;23:2619-2624. doi: 10.12659/msm.901083.
6 PTPN22 Gene Polymorphisms Are Associated with Susceptibility to Large Artery Atherosclerotic Stroke and Microembolic Signals.Dis Markers. 2019 May 5;2019:2193835. doi: 10.1155/2019/2193835. eCollection 2019.
7 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
8 Association of STAT4, TGF1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis.Exp Mol Pathol. 2018 Dec;105(3):279-284. doi: 10.1016/j.yexmp.2018.10.001. Epub 2018 Oct 3.
9 The effect of ACP1, ADA6 and PTPN22 genetic polymorphisms on the association between p53 codon 72 polymorphism and endometriosis.Arch Gynecol Obstet. 2016 Feb;293(2):399-402. doi: 10.1007/s00404-015-3827-6. Epub 2015 Jul 28.
10 Identification of the PTPN22 functional variant R620W as susceptibility genetic factor for giant cell arteritis.Ann Rheum Dis. 2013 Nov;72(11):1882-1886. doi: 10.1136/annrheumdis-2013-203641. Epub 2013 Aug 14.
11 Updates on HIV nonoccupational postexposure prophylaxis.Curr Opin Pediatr. 2019 Aug;31(4):454-461. doi: 10.1097/MOP.0000000000000775.
12 The Contribution of PTPN22 to Rheumatic Disease.Arthritis Rheumatol. 2019 Apr;71(4):486-495. doi: 10.1002/art.40790. Epub 2019 Mar 2.
13 STAT4 rs7574865 G/T and PTPN22 rs2488457 G/C polymorphisms influence the risk of developing juvenile idiopathic arthritis in Han Chinese patients.PLoS One. 2015 Mar 17;10(3):e0117389. doi: 10.1371/journal.pone.0117389. eCollection 2015.
14 IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups.Hum Immunol. 2015 Jul;76(7):525-31. doi: 10.1016/j.humimm.2015.06.001. Epub 2015 Jun 17.
15 PTPN22 R620W Polymorphism is Associated with Myasthenia Gravis Risk: A Systematic Review and Meta-Analysis.Med Sci Monit. 2015 Aug 30;21:2567-71. doi: 10.12659/MSM.894307.
16 Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases.Ann Rheum Dis. 2019 Mar;78(3):311-319. doi: 10.1136/annrheumdis-2018-214127. Epub 2018 Dec 20.
17 Hypolipidemic Effect of Arthrospira (Spirulina) maxima Supplementation and a Systematic Physical Exercise Program in Overweight and Obese Men: A Double-Blind, Randomized, and Crossover Controlled Trial.Mar Drugs. 2019 May 7;17(5):270. doi: 10.3390/md17050270.
18 PEP-1-PEA-15 protects against toxin-induced neuronal damage in a mouse model of Parkinson's disease.Biochim Biophys Acta. 2014 Jun;1840(6):1686-700. doi: 10.1016/j.bbagen.2014.01.004. Epub 2014 Jan 8.
19 Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene single nucleotide polymorphisms and its interaction with T2DM on pulmonary tuberculosis in Chinese Uygur population.Oncotarget. 2017 Jul 15;8(39):65601-65608. doi: 10.18632/oncotarget.19274. eCollection 2017 Sep 12.
20 Comparative Immunogenicity and Safety Trial of 2 Different Schedules of Single-visit Intradermal Rabies Postexposure Vaccination.Clin Infect Dis. 2019 Aug 16;69(5):797-804. doi: 10.1093/cid/ciy983.
21 Association between the PTPN22 1858C/T gene polymorphism and tuberculosis resistance.Infect Genet Evol. 2013 Jun;16:310-3. doi: 10.1016/j.meegid.2013.02.019. Epub 2013 Mar 14.
22 Frequency of human leukocyte antigens class II-DR alleles (HLA-DRB1) in Argentinian patients with early arthritis.Clin Rheumatol. 2019 Mar;38(3):675-681. doi: 10.1007/s10067-018-4319-4. Epub 2018 Oct 10.
23 Association between PTPN22/CTLA-4 Gene Polymorphism and Allergic Rhinitis with Asthma in Children.Iran J Allergy Asthma Immunol. 2016 Oct;15(5):413-419.
24 Lack of association of a functional single nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with susceptibility to Henoch-Schnlein purpura.Clin Exp Rheumatol. 2007 Sep-Oct;25(5):750-3.
25 Cardiac autonomic functioning and post-traumatic stress: A preliminary study in youth at-risk for PTSD.Psychiatry Res. 2020 Feb;284:112684. doi: 10.1016/j.psychres.2019.112684. Epub 2019 Nov 7.
26 Combined analysis of keratinocyte cancers identifies novel genome-wide loci.Hum Mol Genet. 2019 Sep 15;28(18):3148-3160. doi: 10.1093/hmg/ddz121.
27 Experimental colitis in IL-10-deficient mice ameliorates in the absence of PTPN22.Clin Exp Immunol. 2019 Sep;197(3):263-275. doi: 10.1111/cei.13339. Epub 2019 Jul 10.
28 Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups.Ann Rheum Dis. 2016 Aug;75(8):1558-66. doi: 10.1136/annrheumdis-2015-208119. Epub 2015 Sep 11.
29 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
30 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
31 TAT-PEP Enhanced Neurobehavioral Functional Recovery by Facilitating Axonal Regeneration and Corticospinal Tract Projection After Stroke.Mol Neurobiol. 2018 Jan;55(1):652-667. doi: 10.1007/s12035-016-0301-9. Epub 2016 Dec 16.
32 (99m)Tc-Labeled LyP-1 for SPECT Imaging of Triple Negative Breast Cancer.Contrast Media Mol Imaging. 2019 Sep 25;2019:9502712. doi: 10.1155/2019/9502712. eCollection 2019.
33 Association of PTPN22 gene polymorphism with non-segmental vitiligo in South Indian Tamils.Postepy Dermatol Alergol. 2018 Jun;35(3):280-285. doi: 10.5114/ada.2018.76225. Epub 2018 Jun 18.
34 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
35 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
36 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
37 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
38 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
39 Neuronal and cardiac toxicity of pharmacological compounds identified through transcriptomic analysis of human pluripotent stem cell-derived embryoid bodies. Toxicol Appl Pharmacol. 2021 Dec 15;433:115792. doi: 10.1016/j.taap.2021.115792. Epub 2021 Nov 3.
40 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
41 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
42 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
43 Anti-oncogenic and pro-differentiation effects of clorgyline, a monoamine oxidase A inhibitor, on high grade prostate cancer cells. BMC Med Genomics. 2009 Aug 20;2:55. doi: 10.1186/1755-8794-2-55.
44 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
45 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
46 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
47 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.