General Information of Drug Off-Target (DOT) (ID: OTFM3TI9)

DOT Name Pachytene checkpoint protein 2 homolog (TRIP13)
Synonyms
Human papillomavirus type 16 E1 protein-binding protein; 16E1-BP; HPV16 E1 protein-binding protein; Thyroid hormone receptor interactor 13; Thyroid receptor-interacting protein 13; TR-interacting protein 13; TRIP-13
Gene Name TRIP13
Related Disease
Plasma cell myeloma ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Abdominal aortic aneurysm ( )
Adenocarcinoma ( )
Advanced cancer ( )
Aortic aneurysm ( )
Bartter syndrome ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Childhood kidney Wilms tumor ( )
Chordoma ( )
Colorectal carcinoma ( )
Embryonal neoplasm ( )
Epithelial ovarian cancer ( )
Esophageal squamous cell carcinoma ( )
Germ cell tumor ( )
Head and neck cancer ( )
Head and neck carcinoma ( )
Head-neck squamous cell carcinoma ( )
Isolated congenital microcephaly ( )
Lung adenocarcinoma ( )
Mosaic variegated aneuploidy syndrome 1 ( )
Mosaic variegated aneuploidy syndrome 3 ( )
Neoplasm ( )
Oocyte maturation defect 9 ( )
Pontocerebellar hypoplasia ( )
Pontocerebellar hypoplasia type 2 ( )
Prostate cancer ( )
Prostate carcinoma ( )
Schizophrenia ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Wilms tumor ( )
Female infertility due to oocyte meiotic arrest ( )
Kidney Wilms tumor ( )
Mosaic variegated aneuploidy syndrome ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Mycosis fungoides ( )
Small lymphocytic lymphoma ( )
UniProt ID
PCH2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5VQ9; 5VQA; 5WC2; 6F0X; 6LK0; 7L9P
Pfam ID
PF00004
Sequence
MDEAVGDLKQALPCVAESPTVHVEVHQRGSSTAKKEDINLSVRKLLNRHNIVFGDYTWTE
FDEPFLTRNVQSVSIIDTELKVKDSQPIDLSACTVALHIFQLNEDGPSSENLEEETENII
AANHWVLPAAEFHGLWDSLVYDVEVKSHLLDYVMTTLLFSDKNVNSNLITWNRVVLLHGP
PGTGKTSLCKALAQKLTIRLSSRYRYGQLIEINSHSLFSKWFSESGKLVTKMFQKIQDLI
DDKDALVFVLIDEVESLTAARNACRAGTEPSDAIRVVNAVLTQIDQIKRHSNVVILTTSN
ITEKIDVAFVDRADIKQYIGPPSAAAIFKIYLSCLEELMKCQIIYPRQQLLTLRELEMIG
FIENNVSKLSLLLNDISRKSEGLSGRVLRKLPFLAHALYVQAPTVTIEGFLQALSLAVDK
QFEERKKLAAYI
Function
Plays a key role in chromosome recombination and chromosome structure development during meiosis. Required at early steps in meiotic recombination that leads to non-crossovers pathways. Also needed for efficient completion of homologous synapsis by influencing crossover distribution along the chromosomes affecting both crossovers and non-crossovers pathways. Also required for development of higher-order chromosome structures and is needed for synaptonemal-complex formation. In males, required for efficient synapsis of the sex chromosomes and for sex body formation. Promotes early steps of the DNA double-strand breaks (DSBs) repair process upstream of the assembly of RAD51 complexes. Required for depletion of HORMAD1 and HORMAD2 from synapsed chromosomes. Plays a role in mitotic spindle assembly checkpoint (SAC) activation.
KEGG Pathway
Cell cycle (hsa04110 )

Molecular Interaction Atlas (MIA) of This DOT

45 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Plasma cell myeloma DIS0DFZ0 Definitive Biomarker [1]
Thyroid cancer DIS3VLDH Definitive Altered Expression [2]
Thyroid gland carcinoma DISMNGZ0 Definitive Altered Expression [2]
Thyroid tumor DISLVKMD Definitive Altered Expression [2]
Abdominal aortic aneurysm DISD06OF Strong Biomarker [3]
Adenocarcinoma DIS3IHTY Strong Altered Expression [4]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Aortic aneurysm DISQ5KRA Strong Biomarker [3]
Bartter syndrome DIS7D44B Strong Biomarker [6]
Bladder cancer DISUHNM0 Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Biomarker [7]
Breast carcinoma DIS2UE88 Strong Altered Expression [8]
Childhood kidney Wilms tumor DIS0NMK3 Strong Genetic Variation [9]
Chordoma DISCHJE7 Strong Altered Expression [10]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [11]
Embryonal neoplasm DIS5MQSB Strong Biomarker [12]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [13]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [14]
Germ cell tumor DIS62070 Strong Biomarker [12]
Head and neck cancer DISBPSQZ Strong Biomarker [15]
Head and neck carcinoma DISOU1DS Strong Biomarker [15]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [15]
Isolated congenital microcephaly DISUXHZ6 Strong Biomarker [16]
Lung adenocarcinoma DISD51WR Strong Biomarker [17]
Mosaic variegated aneuploidy syndrome 1 DISOV0CG Strong GermlineCausalMutation [12]
Mosaic variegated aneuploidy syndrome 3 DISXPRED Strong Autosomal recessive [12]
Neoplasm DISZKGEW Strong Altered Expression [18]
Oocyte maturation defect 9 DIS5SP4S Strong Autosomal recessive [19]
Pontocerebellar hypoplasia DISRICMU Strong Genetic Variation [20]
Pontocerebellar hypoplasia type 2 DISXV76G Strong Biomarker [21]
Prostate cancer DISF190Y Strong Biomarker [22]
Prostate carcinoma DISMJPLE Strong Biomarker [22]
Schizophrenia DISSRV2N Strong Biomarker [23]
Urinary bladder cancer DISDV4T7 Strong Biomarker [5]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [5]
Wilms tumor DISB6T16 Strong Genetic Variation [9]
Female infertility due to oocyte meiotic arrest DISHCD3C Moderate Autosomal recessive [24]
Kidney Wilms tumor DIS7WJYB Supportive Autosomal dominant [12]
Mosaic variegated aneuploidy syndrome DIS5QTMU Supportive Autosomal dominant [12]
Hepatocellular carcinoma DIS0J828 Limited Altered Expression [18]
Lung cancer DISCM4YA Limited Altered Expression [25]
Lung carcinoma DISTR26C Limited Altered Expression [25]
Melanoma DIS1RRCY Limited Biomarker [26]
Mycosis fungoides DIS62RB8 Limited Biomarker [27]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Pachytene checkpoint protein 2 homolog (TRIP13) affects the response to substance of Cisplatin. [53]
------------------------------------------------------------------------------------
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [29]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [30]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [31]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [32]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [33]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [34]
Quercetin DM3NC4M Approved Quercetin affects the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [35]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [36]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [37]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [37]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [38]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [39]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [40]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [41]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [42]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [43]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [44]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [33]
GSK2110183 DMZHB37 Phase 2 GSK2110183 decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [45]
PEITC DMOMN31 Phase 2 PEITC decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [46]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [47]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [48]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [49]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [50]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [51]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [52]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Pachytene checkpoint protein 2 homolog (TRIP13). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)

References

1 A Small-Molecule Inhibitor Targeting TRIP13 Suppresses Multiple Myeloma Progression.Cancer Res. 2020 Feb 1;80(3):536-548. doi: 10.1158/0008-5472.CAN-18-3987. Epub 2019 Nov 15.
2 TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression.Biomed Pharmacother. 2019 Dec;120:109508. doi: 10.1016/j.biopha.2019.109508. Epub 2019 Oct 22.
3 Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint.Chromosoma. 2019 Sep;128(3):297-316. doi: 10.1007/s00412-019-00696-7. Epub 2019 Mar 12.
4 Prognostic Value of BIRC5 in Lung Adenocarcinoma Lacking EGFR, KRAS, and ALK Mutations by Integrated Bioinformatics Analysis.Dis Markers. 2019 Apr 9;2019:5451290. doi: 10.1155/2019/5451290. eCollection 2019.
5 Four novel biomarkers for bladder cancer identified by weighted gene coexpression network analysis.J Cell Physiol. 2019 Aug;234(10):19073-19087. doi: 10.1002/jcp.28546. Epub 2019 Mar 29.
6 Pontocerebellar hypoplasia: clinical, pathologic, and genetic studies.Neurology. 2010 Oct 19;75(16):1459-64. doi: 10.1212/WNL.0b013e3181f88173.
7 DNA-damage related genes and clinical outcome in hormone receptor positive breast cancer.Oncotarget. 2016 Jul 28;8(38):62834-62841. doi: 10.18632/oncotarget.10886. eCollection 2017 Sep 8.
8 Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer.Mol Cell Proteomics. 2016 Jan;15(1):109-23. doi: 10.1074/mcp.M115.050401. Epub 2015 Nov 2.
9 Absence of the TRIP13 c.1060C>T Mutation in Wilms Tumor Patients From Pakistan.J Pediatr Hematol Oncol. 2020 Apr;42(3):e128-e131. doi: 10.1097/MPH.0000000000001602.
10 The embryonic transcription factor Brachyury confers chordoma chemoresistance via upregulating CA9.Am J Transl Res. 2018 Mar 15;10(3):936-947. eCollection 2018.
11 TRIP13 promotes tumor growth and is associated with poor prognosis in colorectal cancer.Cell Death Dis. 2018 Mar 14;9(3):402. doi: 10.1038/s41419-018-0434-z.
12 Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet. 2017 Jul;49(7):1148-1151. doi: 10.1038/ng.3883. Epub 2017 May 29.
13 TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway.Eur Rev Med Pharmacol Sci. 2019 Jan;23(2):522-529. doi: 10.26355/eurrev_201901_16864.
14 TRIP13 upregulation is correlated with poor prognosis and tumor progression in esophageal squamous cell carcinoma.Pathol Res Pract. 2019 Jun;215(6):152415. doi: 10.1016/j.prp.2019.04.007. Epub 2019 Apr 17.
15 TRIP13 promotes error-prone nonhomologous end joining and induces chemoresistance in head and neck cancer.Nat Commun. 2014 Jul 31;5:4527. doi: 10.1038/ncomms5527.
16 Pontocerebellar hypoplasia type 2 and TSEN2: review of the literature and two novel mutations. Eur J Med Genet. 2013 Jun;56(6):325-30. doi: 10.1016/j.ejmg.2013.03.009. Epub 2013 Apr 3.
17 Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma.Biochem Biophys Res Commun. 2018 May 15;499(3):416-424. doi: 10.1016/j.bbrc.2018.03.129. Epub 2018 Mar 30.
18 Multiple novel hepatocellular carcinoma signature genes are commonly controlled by the master pluripotency factor OCT4.Cell Oncol (Dordr). 2020 Apr;43(2):279-295. doi: 10.1007/s13402-019-00487-3. Epub 2019 Dec 17.
19 Bi-allelic Missense Pathogenic Variants in TRIP13 Cause Female Infertility Characterized by Oocyte Maturation Arrest. Am J Hum Genet. 2020 Jul 2;107(1):15-23. doi: 10.1016/j.ajhg.2020.05.001. Epub 2020 May 29.
20 Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly. Am J Hum Genet. 2016 Jul 7;99(1):228-35. doi: 10.1016/j.ajhg.2016.05.023.
21 Molecular and neuroimaging findings in pontocerebellar hypoplasia type 2 (PCH2): is prenatal diagnosis possible?.Am J Med Genet A. 2010 Sep;152A(9):2268-76. doi: 10.1002/ajmg.a.33579.
22 TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer.Int J Biol Macromol. 2019 Jan;121:200-206. doi: 10.1016/j.ijbiomac.2018.09.168. Epub 2018 Sep 26.
23 Principal components of heritability from neurocognitive domains differ between families with schizophrenia and control subjects.Schizophr Bull. 2013 Mar;39(2):464-71. doi: 10.1093/schbul/sbr161. Epub 2012 Jan 10.
24 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
25 Elevated expression of thyroid hormone receptor-interacting protein 13 drives tumorigenesis and affects clinical outcome.Biomark Med. 2017 Jan;11(1):19-31. doi: 10.2217/bmm-2016-0169. Epub 2016 Nov 9.
26 Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.PLoS One. 2016 May 12;11(5):e0155660. doi: 10.1371/journal.pone.0155660. eCollection 2016.
27 A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides.J Invest Dermatol. 2012 Aug;132(8):2050-9. doi: 10.1038/jid.2012.117. Epub 2012 Apr 19.
28 Loss of thyroid hormone receptor interactor 13 inhibits cell proliferation and survival in human chronic lymphocytic leukemia.Oncotarget. 2017 Apr 11;8(15):25469-25481. doi: 10.18632/oncotarget.16038.
29 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
30 Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicol In Vitro. 2009 Apr;23(3):486-99.
31 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
32 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
33 Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 2006 Aug;27(8):1567-78.
34 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
35 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
36 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
37 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
38 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
39 Computational discovery of niclosamide ethanolamine, a repurposed drug candidate that reduces growth of hepatocellular carcinoma cells initro and in mice by inhibiting cell division cycle 37 signaling. Gastroenterology. 2017 Jun;152(8):2022-2036.
40 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
41 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
42 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
43 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
44 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
45 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
46 Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017 Jan;32(1):176-187.
47 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
48 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
49 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
50 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
51 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
52 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
53 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.