General Information of Drug Off-Target (DOT) (ID: OTJ8LX4N)

DOT Name Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2)
Synonyms PEPCK-M; EC 4.1.1.32; Phosphoenolpyruvate carboxykinase 2, mitochondrial; mtPCK2
Gene Name PCK2
Related Disease
Bone osteosarcoma ( )
Hyperglycemia ( )
Neoplasm ( )
Osteosarcoma ( )
Fatty liver disease ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Lung cancer ( )
Lung carcinoma ( )
Metabolic bone disease ( )
Metabolic disorder ( )
Non-small-cell lung cancer ( )
Obesity ( )
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
Type-1/2 diabetes ( )
Phosphoenolpyruvate carboxykinase deficiency ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Liver cancer ( )
Melanoma ( )
Phosphoenolpyruvate carboxykinase deficiency, mitochondrial ( )
Rectal carcinoma ( )
UniProt ID
PCKGM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
4.1.1.32
Pfam ID
PF00821 ; PF17297
Sequence
MAALYRPGLRLNWHGLSPLGWPSCRSIQTLRVLSGDLGQLPTGIRDFVEHSARLCQPEGI
HICDGTEAENTATLTLLEQQGLIRKLPKYNNCWLARTDPKDVARVESKTVIVTPSQRDTV
PLPPGGARGQLGNWMSPADFQRAVDERFPGCMQGRTMYVLPFSMGPVGSPLSRIGVQLTD
SAYVVASMRIMTRLGTPVLQALGDGDFVKCLHSVGQPLTGQGEPVSQWPCNPEKTLIGHV
PDQREIISFGSGYGGNSLLGKKCFALRIASRLARDEGWLAEHMLILGITSPAGKKRYVAA
AFPSACGKTNLAMMRPALPGWKVECVGDDIAWMRFDSEGRLRAINPENGFFGVAPGTSAT
TNPNAMATIQSNTIFTNVAETSDGGVYWEGIDQPLPPGVTVTSWLGKPWKPGDKEPCAHP
NSRFCAPARQCPIMDPAWEAPEGVPIDAIIFGGRRPKGVPLVYEAFNWRHGVFVGSAMRS
ESTAAAEHKGKIIMHDPFAMRPFFGYNFGHYLEHWLSMEGRKGAQLPRIFHVNWFRRDEA
GHFLWPGFGENARVLDWICRRLEGEDSARETPIGLVPKEGALDLSGLRAIDTTQLFSLPK
DFWEQEVRDIRSYLTEQVNQDLPKEVLAELEALERRVHKM
Function
Mitochondrial phosphoenolpyruvate carboxykinase that catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. Can play an active role in glyceroneogenesis and gluconeogenesis.
Tissue Specificity Widely expressed.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Citrate cycle (TCA cycle) (hsa00020 )
Pyruvate metabolism (hsa00620 )
Metabolic pathways (hsa01100 )
PPAR sig.ling pathway (hsa03320 )
FoxO sig.ling pathway (hsa04068 )
PI3K-Akt sig.ling pathway (hsa04151 )
AMPK sig.ling pathway (hsa04152 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Proximal tubule bicarbo.te reclamation (hsa04964 )
Reactome Pathway
Gluconeogenesis (R-HSA-70263 )
BioCyc Pathway
MetaCyc:HS02160-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bone osteosarcoma DIST1004 Definitive Biomarker [1]
Hyperglycemia DIS0BZB5 Definitive Altered Expression [2]
Neoplasm DISZKGEW Definitive Biomarker [3]
Osteosarcoma DISLQ7E2 Definitive Biomarker [1]
Fatty liver disease DIS485QZ Strong Altered Expression [4]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [5]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [6]
Lung cancer DISCM4YA Strong Biomarker [7]
Lung carcinoma DISTR26C Strong Biomarker [7]
Metabolic bone disease DISO7RI8 Strong Biomarker [8]
Metabolic disorder DIS71G5H Strong Biomarker [8]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [9]
Obesity DIS47Y1K Strong Genetic Variation [10]
Prostate cancer DISF190Y Strong Altered Expression [11]
Prostate carcinoma DISMJPLE Strong Altered Expression [11]
Prostate neoplasm DISHDKGQ Strong Biomarker [11]
Type-1/2 diabetes DISIUHAP Strong Biomarker [12]
Phosphoenolpyruvate carboxykinase deficiency DISOMDLN Supportive Autosomal recessive [13]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Limited Altered Expression [14]
Liver cancer DISDE4BI Limited Altered Expression [14]
Melanoma DIS1RRCY Limited Altered Expression [3]
Phosphoenolpyruvate carboxykinase deficiency, mitochondrial DIS6OLCY Limited Autosomal recessive [15]
Rectal carcinoma DIS8FRR7 Limited Biomarker [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
40 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [17]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [18]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [19]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [20]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [21]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate affects the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [22]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [23]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [24]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [25]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [26]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [27]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [17]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [28]
Progesterone DMUY35B Approved Progesterone increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [29]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [30]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [31]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [30]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [32]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [33]
Clozapine DMFC71L Approved Clozapine decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [34]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [35]
Sulindac DM2QHZU Approved Sulindac increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [36]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [37]
Bosentan DMIOGBU Approved Bosentan decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [38]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [39]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [24]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [40]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [41]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [42]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [45]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [46]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [47]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [48]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [49]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [50]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [51]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [52]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [53]
Linalool DMGZQ5P Investigative Linalool increases the expression of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [54]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Phosphoenolpyruvate carboxykinase , mitochondrial (PCK2). [43]
------------------------------------------------------------------------------------

References

1 High Expression of PQBP1 and Low Expression of PCK2 are Associated with Metastasis and Recurrence of Osteosarcoma and Unfavorable Survival Outcomes of the Patients.J Cancer. 2019 May 12;10(9):2091-2101. doi: 10.7150/jca.28480. eCollection 2019.
2 Par14 protein associates with insulin receptor substrate 1 (IRS-1), thereby enhancing insulin-induced IRS-1 phosphorylation and metabolic actions.J Biol Chem. 2013 Jul 12;288(28):20692-701. doi: 10.1074/jbc.M113.485730. Epub 2013 May 29.
3 Downregulation of PCK2 remodels tricarboxylic acid cycle in tumor-repopulating cells of melanoma.Oncogene. 2017 Jun 22;36(25):3609-3617. doi: 10.1038/onc.2016.520. Epub 2017 Feb 6.
4 Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis.Diabetes. 2008 May;57(5):1355-62. doi: 10.2337/db07-0714. Epub 2008 Mar 3.
5 Hepatitis C virus core protein induces hepatic metabolism disorders through down-regulation of the SIRT1-AMPK signaling pathway.Int J Infect Dis. 2013 Jul;17(7):e539-45. doi: 10.1016/j.ijid.2013.01.027. Epub 2013 Mar 16.
6 Rev-erb activation down-regulates hepatic Pck1 enzyme to lower plasma glucose in mice.Pharmacol Res. 2019 Mar;141:310-318. doi: 10.1016/j.phrs.2019.01.010. Epub 2019 Jan 11.
7 The glycerol backbone of phospholipids derives from noncarbohydrate precursors in starved lung cancer cells.Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6225-6230. doi: 10.1073/pnas.1719871115. Epub 2018 May 29.
8 Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Osteogenic Differentiation by Modulating AMPK/ULK1-Dependent Autophagy.Stem Cells. 2019 Dec;37(12):1542-1555. doi: 10.1002/stem.3091. Epub 2019 Oct 14.
9 Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth.Mol Cell. 2015 Oct 15;60(2):195-207. doi: 10.1016/j.molcel.2015.08.013.
10 Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth.J Pediatr. 2018 Nov;202:150-156.e3. doi: 10.1016/j.jpeds.2018.06.051. Epub 2018 Aug 31.
11 Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells.Oncotarget. 2017 Jun 28;8(48):83602-83618. doi: 10.18632/oncotarget.18787. eCollection 2017 Oct 13.
12 PCK1 and PCK2 as candidate diabetes and obesity genes.Cell Biochem Biophys. 2007;48(2-3):89-95. doi: 10.1007/s12013-007-0025-6.
13 Mitochondrial phosphoenolpyruvate carboxykinase deficiency. Eur J Pediatr. 1991 Jan;150(3):198-9. doi: 10.1007/BF01963566.
14 Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma.Oncogene. 2018 Mar;37(12):1637-1653. doi: 10.1038/s41388-017-0070-6. Epub 2018 Jan 16.
15 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
16 Expression of phosphoenolpyruvate carboxykinase linked to chemoradiation susceptibility of human colon cancer cells.BMC Cancer. 2014 Mar 6;14:160. doi: 10.1186/1471-2407-14-160.
17 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
20 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
21 Pretreatment of 3-MA prevents doxorubicin-induced cardiotoxicity through inhibition of autophagy initiation. Toxicology. 2023 May 15;490:153512. doi: 10.1016/j.tox.2023.153512. Epub 2023 Apr 14.
22 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
23 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
24 Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett. 2005 Mar 14;579(7):1732-40.
25 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
26 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
27 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
28 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
29 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
30 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
31 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
32 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
33 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
34 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
35 In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer. 2006 Mar 28;5:13.
36 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
37 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
38 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
39 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
40 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
41 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
42 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
45 Metabolomic modulations of HepG2 cells exposed to bisphenol analogues. Environ Int. 2019 Aug;129:59-67. doi: 10.1016/j.envint.2019.05.008. Epub 2019 May 20.
46 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
47 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
48 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
49 Ochratoxin a lowers mRNA levels of genes encoding for key proteins of liver cell metabolism. Cancer Genomics Proteomics. 2008 Nov-Dec;5(6):319-32.
50 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
51 Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem Toxicol. 2014 Feb;64:10-9. doi: 10.1016/j.fct.2013.11.014. Epub 2013 Nov 19.
52 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.
53 In Vitro Exposure of Human Luteinized Mural Granulosa Cells to Dibutyl Phthalate Affects Global Gene Expression. Toxicol Sci. 2017 Nov 1;160(1):180-188. doi: 10.1093/toxsci/kfx170.
54 Linalool is a PPARalpha ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014 Jun;55(6):1098-110.