General Information of Drug Off-Target (DOT) (ID: OTJOVF68)

DOT Name Plakophilin-2 (PKP2)
Gene Name PKP2
Related Disease
Arrhythmogenic right ventricular cardiomyopathy ( )
Arrhythmogenic right ventricular dysplasia 9 ( )
Autism ( )
Adenocarcinoma ( )
Atopic dermatitis ( )
Atrial fibrillation ( )
Bladder cancer ( )
Cardiac disease ( )
Cardiac failure ( )
Cardiomyopathy ( )
Colon cancer ( )
Colon carcinoma ( )
Congestive heart failure ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Dilated cardiomyopathy 1A ( )
Glioma ( )
Influenza ( )
Naxos disease ( )
Non-small-cell lung cancer ( )
Paroxysmal familial ventricular fibrillation ( )
Squamous cell carcinoma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Left ventricular noncompaction ( )
Brugada syndrome 1 ( )
Catecholaminergic polymorphic ventricular tachycardia ( )
Conduction system disorder ( )
Dilated cardiomyopathy ( )
Sinoatrial node disorder ( )
Ventricular tachycardia ( )
Advanced cancer ( )
Arrhythmia ( )
Brugada syndrome ( )
Carcinoma ( )
Familial atrial fibrillation ( )
Neoplasm ( )
UniProt ID
PKP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3TT9
Pfam ID
PF00514
Sequence
MAAPGAPAEYGYIRTVLGQQILGQLDSSSLALPSEAKLKLAGSSGRGGQTVKSLRIQEQV
QQTLARKGRSSVGNGNLHRTSSVPEYVYNLHLVENDFVGGRSPVPKTYDMLKAGTTATYE
GRWGRGTAQYSSQKSVEERSLRHPLRRLEISPDSSPERAHYTHSDYQYSQRSQAGHTLHH
QESRRAALLVPPRYARSEIVGVSRAGTTSRQRHFDTYHRQYQHGSVSDTVFDSIPANPAL
LTYPRPGTSRSMGNLLEKENYLTAGLTVGQVRPLVPLQPVTQNRASRSSWHQSSFHSTRT
LREAGPSVAVDSSGRRAHLTVGQAAAGGSGNLLTERSTFTDSQLGNADMEMTLERAVSML
EADHMLPSRISAAATFIQHECFQKSEARKRVNQLRGILKLLQLLKVQNEDVQRAVCGALR
NLVFEDNDNKLEVAELNGVPRLLQVLKQTRDLETKKQITDHTVNLRSRNGWPGAVAHACN
PSTLGGQGGRITRSGVRDQPDQHGLLWNLSSNDKLKNLMITEALLTLTENIIIPFSGWPE
GDYPKANGLLDFDIFYNVTGCLRNMSSAGADGRKAMRRCDGLIDSLVHYVRGTIADYQPD
DKATENCVCILHNLSYQLEAELPEKYSQNIYIQNRNIQTDNNKSIGCFGSRSRKVKEQYQ
DVPMPEEKSNPKGVEWLWHSIVIRMYLSLIAKSVRNYTQEASLGALQNLTAGSGPMPTSV
AQTVVQKESGLQHTRKMLHVGDPSVKKTAISLLRNLSRNLSLQNEIAKETLPDLVSIIPD
TVPSTDLLIETTASACYTLNNIIQNSYQNARDLLNTGGIQKIMAISAGDAYASNKASKAA
SVLLYSLWAHTELHHAYKKAQFKKTDFVNSRTAKAYHSLKD
Function
Regulates focal adhesion turnover resulting in changes in focal adhesion size, cell adhesion and cell spreading, potentially via transcriptional modulation of beta-integrins. Required to maintain gingival epithelial barrier function. Required for cardiac sodium current propagation and electrical synchrony in cardiac myocytes, via ANK3 stabilization and modulation of SCN5A/Nav1.5 localization to cell-cell junctions. Required for the formation of desmosome cell junctions in cardiomyocytes, thereby required for the correct formation of the heart, specifically trabeculation and formation of the atria walls. Loss of desmosome cell junctions leads to mis-localization of DSP and DSG2 resulting in disruption of cell-cell adhesion and disordered intermediate filaments. Modulates profibrotic gene expression in cardiomyocytes via regulation of DSP expression and subsequent activation of downstream TGFB1 and MAPK14/p38 MAPK signaling. Required for mitochondrial function, nuclear envelope integrity and positive regulation of SIRT3 transcription via maintaining DES localization at its nuclear envelope and cell tip anchoring points, and thereby preserving regulation of the transcriptional program. Maintenance of nuclear envelope integrity protects against DNA damage and transcriptional dysregulation of genes, especially those involved in the electron transport chain, thereby preserving mitochondrial function and protecting against superoxide radical anion generation. May play a role in junctional plaques. Involved in the inhibition of viral infection by influenza A viruses (IAV). Acts as a host restriction factor for IAV viral propagation, potentially via disrupting the interaction of IAV polymerase complex proteins.
Tissue Specificity
Detected in heart right ventricle (at protein level). Expressed in gingival epithelial, endothelial and fibroblast cells (at protein level) . Faintly expressed in tracheal epithelial cells (at protein level) . Widely expressed. Found at desmosomal plaques in simple and stratified epithelia and in non-epithelial tissues such as myocardium and lymph node follicles. In most stratified epithelia found in the desmosomes of the basal cell layer and seems to be absent from suprabasal strata.; (Microbial infection) Abundantly expressed in tracheal epithelial cells following influenza A virus infection (at protein level).
KEGG Pathway
Cytoskeleton in muscle cells (hsa04820 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Reactome Pathway
Formation of the cornified envelope (R-HSA-6809371 )
Keratinization (R-HSA-6805567 )

Molecular Interaction Atlas (MIA) of This DOT

37 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arrhythmogenic right ventricular cardiomyopathy DIS3V2BE Definitive Autosomal dominant [1]
Arrhythmogenic right ventricular dysplasia 9 DISBHWTY Definitive Autosomal dominant [2]
Autism DISV4V1Z Definitive Genetic Variation [3]
Adenocarcinoma DIS3IHTY Strong Biomarker [4]
Atopic dermatitis DISTCP41 Strong Genetic Variation [5]
Atrial fibrillation DIS15W6U Strong Genetic Variation [6]
Bladder cancer DISUHNM0 Strong Altered Expression [7]
Cardiac disease DISVO1I5 Strong Genetic Variation [8]
Cardiac failure DISDC067 Strong Genetic Variation [9]
Cardiomyopathy DISUPZRG Strong Genetic Variation [9]
Colon cancer DISVC52G Strong Biomarker [10]
Colon carcinoma DISJYKUO Strong Biomarker [10]
Congestive heart failure DIS32MEA Strong Genetic Variation [9]
Coronary atherosclerosis DISKNDYU Strong Biomarker [11]
Coronary heart disease DIS5OIP1 Strong Biomarker [11]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Genetic Variation [12]
Glioma DIS5RPEH Strong Altered Expression [13]
Influenza DIS3PNU3 Strong Biomarker [14]
Naxos disease DISL5ZUP Strong Genetic Variation [15]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [16]
Paroxysmal familial ventricular fibrillation DISRM7IX Strong Genetic Variation [17]
Squamous cell carcinoma DISQVIFL Strong Biomarker [4]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [7]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [7]
Left ventricular noncompaction DISJ4QEG Supportive Autosomal dominant [18]
Brugada syndrome 1 DISKBA7V Disputed Autosomal dominant [1]
Catecholaminergic polymorphic ventricular tachycardia DISSAS1A Disputed Autosomal dominant [1]
Conduction system disorder DISED5HG Disputed Biomarker [19]
Dilated cardiomyopathy DISX608J Disputed Autosomal dominant [1]
Sinoatrial node disorder DISYJI6J Disputed Biomarker [19]
Ventricular tachycardia DISIBXJ3 Disputed Genetic Variation [20]
Advanced cancer DISAT1Z9 Limited Altered Expression [16]
Arrhythmia DISFF2NI Limited Genetic Variation [21]
Brugada syndrome DISSGN0E Limited Autosomal dominant [22]
Carcinoma DISH9F1N Limited Biomarker [4]
Familial atrial fibrillation DISL4AGF Limited Biomarker [6]
Neoplasm DISZKGEW Limited Biomarker [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Plakophilin-2 (PKP2) decreases the response to substance of Paclitaxel. [44]
Capecitabine DMTS85L Approved Plakophilin-2 (PKP2) increases the response to substance of Capecitabine. [44]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Plakophilin-2 (PKP2). [23]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Plakophilin-2 (PKP2). [24]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Plakophilin-2 (PKP2). [25]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Plakophilin-2 (PKP2). [26]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Plakophilin-2 (PKP2). [27]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Plakophilin-2 (PKP2). [28]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Plakophilin-2 (PKP2). [29]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Plakophilin-2 (PKP2). [30]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Plakophilin-2 (PKP2). [31]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Plakophilin-2 (PKP2). [32]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Plakophilin-2 (PKP2). [32]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Plakophilin-2 (PKP2). [33]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Plakophilin-2 (PKP2). [34]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Plakophilin-2 (PKP2). [35]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Plakophilin-2 (PKP2). [36]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Plakophilin-2 (PKP2). [37]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Plakophilin-2 (PKP2). [39]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Plakophilin-2 (PKP2). [40]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Plakophilin-2 (PKP2). [41]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Plakophilin-2 (PKP2). [42]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Plakophilin-2 (PKP2). [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Plakophilin-2 (PKP2). [38]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Plakophilin-2 (PKP2). [38]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Recessive arrhythmogenic right ventricular dysplasia due to novel cryptic splice mutation in PKP2. Hum Mutat. 2006 Nov;27(11):1157. doi: 10.1002/humu.9461.
3 Molecular insights into arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 missense mutations.Circ Cardiovasc Genet. 2012 Aug 1;5(4):400-11. doi: 10.1161/CIRCGENETICS.111.961854. Epub 2012 Jul 9.
4 Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues.Differentiation. 1999 Jun;64(5):277-90. doi: 10.1046/j.1432-0436.1999.6450277.x.
5 Multiple regulatory variants located in cell type-specific enhancers within the PKP2 locus form major risk and protective haplotypes for canine atopic dermatitis in German shepherd dogs.BMC Genet. 2016 Jun 29;17(1):97. doi: 10.1186/s12863-016-0404-3.
6 Multi-ethnic genome-wide association study for atrial fibrillation.Nat Genet. 2018 Jun 11;50(9):1225-1233. doi: 10.1038/s41588-018-0133-9.
7 Up-regulation of plakophilin-2 and Down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer.Urology. 2012 Jan;79(1):240.e1-8. doi: 10.1016/j.urology.2011.08.049. Epub 2011 Nov 25.
8 Plakophilin 2A is the dominant isoform in human heart tissue: consequences for the genetic screening of arrhythmogenic right ventricular cardiomyopathy.Heart. 2011 May;97(10):844-9. doi: 10.1136/hrt.2010.205880. Epub 2011 Mar 3.
9 Recessive variants in plakophilin-2 contributes to early-onset arrhythmogenic cardiomyopathy with severe heart failure.Europace. 2019 Jun 1;21(6):970-977. doi: 10.1093/europace/euz026.
10 The human PKP2/plakophilin-2 gene is induced by Wnt/-catenin in normal and colon cancer-associated fibroblasts.Int J Cancer. 2018 Feb 15;142(4):792-804. doi: 10.1002/ijc.31104. Epub 2017 Oct 31.
11 Alterations of protein expression of phospholamban, ZASP and plakoglobin in human atria in subgroups of seniors.Sci Rep. 2019 Apr 4;9(1):5610. doi: 10.1038/s41598-019-42141-w.
12 Plakophilin-2 c.419C>T and risk of heart failure and arrhythmias in the general population.Eur J Hum Genet. 2016 May;24(5):732-8. doi: 10.1038/ejhg.2015.171. Epub 2015 Aug 12.
13 Up-regulation of plakophilin-2 is correlated with the progression of glioma.Neuropathology. 2017 Jun;37(3):207-216. doi: 10.1111/neup.12363. Epub 2017 Jan 26.
14 Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction.Nat Commun. 2017 Feb 7;8:13876. doi: 10.1038/ncomms13876.
15 Arrhythmogenic right ventricular cardiomyopathy caused by deletions in plakophilin-2 and plakoglobin (Naxos disease) in families from Greece and Cyprus: genotype-phenotype relations, diagnostic features and prognosis.Eur Heart J. 2006 Sep;27(18):2208-16. doi: 10.1093/eurheartj/ehl184. Epub 2006 Aug 7.
16 Plakophilin-2 accelerates cell proliferation and migration through activating EGFR signaling in lung adenocarcinoma.Pathol Res Pract. 2019 Jul;215(7):152438. doi: 10.1016/j.prp.2019.152438. Epub 2019 May 13.
17 Sudden Cardiac Arrest and Rare Genetic Variants in the Community.Circ Cardiovasc Genet. 2016 Apr;9(2):147-53. doi: 10.1161/CIRCGENETICS.115.001263. Epub 2016 Jan 22.
18 Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction. Clin Genet. 2017 Jan;91(1):126-130. doi: 10.1111/cge.12780. Epub 2016 Apr 26.
19 Epicardial Ventricular Tachycardia Ablation in a Patient With Brugada ECG Pattern and Mutation of PKP2 and DSP Genes.Circ Arrhythm Electrophysiol. 2015 Apr;8(2):505-7. doi: 10.1161/CIRCEP.114.002342.
20 Phenotypic Manifestations of Arrhythmogenic Cardiomyopathy in Children and Adolescents.J Am Coll Cardiol. 2019 Jul 23;74(3):346-358. doi: 10.1016/j.jacc.2019.05.022.
21 Plakophilin-2 Haploinsufficiency Causes Calcium Handling Deficits and Modulates the Cardiac Response Towards Stress.Int J Mol Sci. 2019 Aug 21;20(17):4076. doi: 10.3390/ijms20174076.
22 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
23 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
24 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
25 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
26 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
27 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
28 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
29 Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mol Biol Cell. 2004 Mar;15(3):1262-72. doi: 10.1091/mbc.e03-06-0360. Epub 2003 Dec 29.
30 Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro. Eur J Nutr. 2005 Mar;44(3):143-56. doi: 10.1007/s00394-004-0503-1. Epub 2004 Apr 30.
31 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
32 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
33 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
34 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
35 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
36 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
39 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
40 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
41 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
42 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
43 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
44 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.