General Information of Drug Off-Target (DOT) (ID: OTPRKS6S)

DOT Name Splicing factor 3B subunit 6 (SF3B6)
Synonyms Pre-mRNA branch site protein p14; SF3b 14 kDa subunit; SF3B14a; Spliceosome-associated protein, 14-kDa; Splicing factor 3b, subunit 6, 14kDa
Gene Name SF3B6
Related Disease
Adenocarcinoma ( )
Glioma ( )
Hepatocellular carcinoma ( )
Medulloblastoma ( )
Acute myelogenous leukaemia ( )
Acute myocardial infarction ( )
Advanced cancer ( )
Bladder cancer ( )
Breast neoplasm ( )
Clear cell renal carcinoma ( )
Cystic fibrosis ( )
Familial adenomatous polyposis ( )
Hepatitis B virus infection ( )
Hepatitis C virus infection ( )
Liver cirrhosis ( )
Lung cancer ( )
Lung carcinoma ( )
Lymphoma ( )
Neoplasm ( )
Pancreatic cancer ( )
Plasma cell myeloma ( )
Promyelocytic leukaemia ( )
Renal cell carcinoma ( )
Rheumatoid arthritis ( )
Schizophrenia ( )
Severe congenital neutropenia ( )
Sjogren syndrome ( )
Skin cancer ( )
Small lymphocytic lymphoma ( )
Small-cell lung cancer ( )
Squamous cell carcinoma ( )
Systemic lupus erythematosus ( )
Systemic sclerosis ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Lung adenocarcinoma ( )
Pediatric lymphoma ( )
Stroke ( )
Carcinoma ( )
Adult lymphoma ( )
Colorectal carcinoma ( )
Intellectual disability ( )
Melanoma ( )
Type-1/2 diabetes ( )
UniProt ID
SF3B6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2F9D; 2F9J; 2FHO; 3LQV; 5Z56; 5Z57; 5Z58; 6AH0; 6AHD; 6FF4; 6FF7; 6Y53; 6Y5Q; 7ABG; 7ABH; 7ABI; 7DVQ; 7Q4O
Pfam ID
PF00076
Sequence
MAMQAAKRANIRLPPEVNRILYIRNLPYKITAEEMYDIFGKYGPIRQIRVGNTPETRGTA
YVVYEDIFDAKNACDHLSGFNVCNRYLVVLYYNANRAFQKMDTKKKEEQLKLLKEKYGIN
TDPPK
Function
Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs. The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing. Within the 17S U2 SnRNP complex, SF3B6 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA. Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. Within the 17S U2 SnRNP complex, SF3B6 directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing. SF3B6 stabilizes the intron branch site-U2 snRNA duplex, thereby promoting-binding of introns with poor sequence complementarity. Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs.
KEGG Pathway
Spliceosome (hsa03040 )
Reactome Pathway
mRNA Splicing - Minor Pathway (R-HSA-72165 )
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Definitive Posttranslational Modification [1]
Glioma DIS5RPEH Definitive Biomarker [2]
Hepatocellular carcinoma DIS0J828 Definitive Genetic Variation [3]
Medulloblastoma DISZD2ZL Definitive Biomarker [4]
Acute myelogenous leukaemia DISCSPTN Strong Posttranslational Modification [5]
Acute myocardial infarction DISE3HTG Strong Biomarker [6]
Advanced cancer DISAT1Z9 Strong Altered Expression [7]
Bladder cancer DISUHNM0 Strong Posttranslational Modification [8]
Breast neoplasm DISNGJLM Strong Biomarker [9]
Clear cell renal carcinoma DISBXRFJ Strong Genetic Variation [10]
Cystic fibrosis DIS2OK1Q Strong Biomarker [11]
Familial adenomatous polyposis DISW53RE Strong Biomarker [12]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [13]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [14]
Liver cirrhosis DIS4G1GX Strong Genetic Variation [15]
Lung cancer DISCM4YA Strong Posttranslational Modification [16]
Lung carcinoma DISTR26C Strong Posttranslational Modification [16]
Lymphoma DISN6V4S Strong Altered Expression [17]
Neoplasm DISZKGEW Strong Biomarker [7]
Pancreatic cancer DISJC981 Strong Genetic Variation [12]
Plasma cell myeloma DIS0DFZ0 Strong Posttranslational Modification [18]
Promyelocytic leukaemia DISYGG13 Strong Posttranslational Modification [5]
Renal cell carcinoma DISQZ2X8 Strong Genetic Variation [10]
Rheumatoid arthritis DISTSB4J Strong Altered Expression [11]
Schizophrenia DISSRV2N Strong Genetic Variation [19]
Severe congenital neutropenia DISES99N Strong Genetic Variation [20]
Sjogren syndrome DISUBX7H Strong Altered Expression [11]
Skin cancer DISTM18U Strong Genetic Variation [21]
Small lymphocytic lymphoma DIS30POX Strong Biomarker [22]
Small-cell lung cancer DISK3LZD Strong Biomarker [23]
Squamous cell carcinoma DISQVIFL Strong Biomarker [24]
Systemic lupus erythematosus DISI1SZ7 Strong Altered Expression [11]
Systemic sclerosis DISF44L6 Strong Altered Expression [11]
Urinary bladder cancer DISDV4T7 Strong Posttranslational Modification [8]
Urinary bladder neoplasm DIS7HACE Strong Posttranslational Modification [8]
Breast cancer DIS7DPX1 moderate Genetic Variation [25]
Breast carcinoma DIS2UE88 moderate Genetic Variation [25]
Lung adenocarcinoma DISD51WR moderate Altered Expression [26]
Pediatric lymphoma DIS51BK2 moderate Altered Expression [17]
Stroke DISX6UHX moderate Genetic Variation [27]
Carcinoma DISH9F1N Disputed Biomarker [28]
Adult lymphoma DISK8IZR Limited Altered Expression [17]
Colorectal carcinoma DIS5PYL0 Limited Posttranslational Modification [29]
Intellectual disability DISMBNXP Limited Biomarker [30]
Melanoma DIS1RRCY Limited Biomarker [31]
Type-1/2 diabetes DISIUHAP Limited Genetic Variation [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Splicing factor 3B subunit 6 (SF3B6). [33]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Splicing factor 3B subunit 6 (SF3B6). [34]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Splicing factor 3B subunit 6 (SF3B6). [35]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Splicing factor 3B subunit 6 (SF3B6). [36]
Nicotine DMWX5CO Approved Nicotine increases the expression of Splicing factor 3B subunit 6 (SF3B6). [37]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Splicing factor 3B subunit 6 (SF3B6). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Splicing factor 3B subunit 6 (SF3B6). [41]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Splicing factor 3B subunit 6 (SF3B6). [42]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Splicing factor 3B subunit 6 (SF3B6). [43]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Splicing factor 3B subunit 6 (SF3B6). [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Splicing factor 3B subunit 6 (SF3B6). [38]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Splicing factor 3B subunit 6 (SF3B6). [39]
------------------------------------------------------------------------------------

References

1 EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1.Cell Oncol (Dordr). 2011 Jun;34(3):209-14. doi: 10.1007/s13402-011-0028-6. Epub 2011 May 3.
2 Frequent and variable abnormalities in p14 tumor suppressor gene in glioma cell lines.Brain Tumor Pathol. 2008;25(1):9-17. doi: 10.1007/s10014-007-0226-0. Epub 2008 Apr 16.
3 Role of P14 and MGMT gene methylation in hepatocellular carcinomas: a meta-analysis.Asian Pac J Cancer Prev. 2014;15(16):6591-6. doi: 10.7314/apjcp.2014.15.16.6591.
4 Frequent but borderline methylation of p16 (INK4a) and TIMP3 in medulloblastoma and sPNET revealed by quantitative analyses.J Neurooncol. 2007 May;83(1):17-29. doi: 10.1007/s11060-006-9309-8. Epub 2007 Jan 6.
5 Epigenetic dysregulation of the DAP kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in acute leukaemias.J Clin Pathol. 2008 Jul;61(7):844-7. doi: 10.1136/jcp.2007.047324.
6 Regenerative Potential of Neonatal Porcine Hearts.Circulation. 2018 Dec 11;138(24):2809-2816. doi: 10.1161/CIRCULATIONAHA.118.034886.
7 An Oncolytic Adenovirus Vector Expressing p14 FAST Protein Induces Widespread Syncytium Formation and Reduces Tumor Growth Rate InVivo.Mol Ther Oncolytics. 2019 May 15;14:107-120. doi: 10.1016/j.omto.2019.05.001. eCollection 2019 Sep 27.
8 Hypermethylation of E-cadherin, p16, p14, and RASSF1A genes in pathologically normal urothelium predict bladder recurrence of bladder cancer after transurethral resection.Urol Oncol. 2012 Mar-Apr;30(2):177-81. doi: 10.1016/j.urolonc.2010.01.002. Epub 2010 Aug 25.
9 Association of Mouse Mammary Tumor Virus With Human Breast Cancer: Histology, Immunohistochemistry and Polymerase Chain Reaction Analyses.Front Oncol. 2018 May 7;8:141. doi: 10.3389/fonc.2018.00141. eCollection 2018.
10 Major role for a 3p21 region and lack of involvement of the t(3;8) breakpoint region in the development of renal cell carcinoma suggested by loss of heterozygosity analysis.Genes Chromosomes Cancer. 1996 Jan;15(1):64-72. doi: 10.1002/(SICI)1098-2264(199601)15:1<64::AID-GCC9>3.0.CO;2-2.
11 Myeloid calcium binding proteins: expression in the differentiated HL-60 cells and detection in sera of patients with connective tissue diseases.J Biochem. 1990 Oct;108(4):650-3. doi: 10.1093/oxfordjournals.jbchem.a123257.
12 CDKN2A germline mutations in familial pancreatic cancer.Ann Surg. 2002 Dec;236(6):730-7. doi: 10.1097/00000658-200212000-00005.
13 Promoter hypermethylation of p14 (ARF) , RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection.Tumour Biol. 2014 Mar;35(3):2795-802. doi: 10.1007/s13277-013-1372-0. Epub 2013 Nov 20.
14 Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation.Oncotarget. 2017 Aug 18;8(49):85584-85598. doi: 10.18632/oncotarget.20337. eCollection 2017 Oct 17.
15 Studying the frequency of aberrant DNA methylation of APC, P14, and E-cadherin genes in HCV-related hepatocarcinogenesis.Cancer Biomark. 2018;22(3):503-509. doi: 10.3233/CBM-171156.
16 Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer.Int J Cancer. 2003 Oct 10;106(6):913-8. doi: 10.1002/ijc.11322.
17 Primary malignant lymphoma of the brain: frequent abnormalities and inactivation of p14 tumor suppressor gene.Cancer Sci. 2005 Jan;96(1):38-41. doi: 10.1111/j.1349-7006.2005.00003.x.
18 Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J Clin Pathol. 2007 Jun;60(6):664-9. doi: 10.1136/jcp.2006.038331.
19 Early Development of Parvalbumin-, Somatostatin-, and Cholecystokinin-Expressing Neurons in Rat Brain following Prenatal Immune Activation and Maternal Iron Deficiency.Dev Neurosci. 2016;38(5):342-353. doi: 10.1159/000454677. Epub 2017 Feb 18.
20 Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia.Br J Haematol. 2009 Feb;144(4):459-67. doi: 10.1111/j.1365-2141.2008.07425.x. Epub 2008 Dec 10.
21 p14ARF hypermethylation is common but INK4a-ARF locus or p53 mutations are rare in Merkel cell carcinoma.J Invest Dermatol. 2008 Jul;128(7):1788-96. doi: 10.1038/sj.jid.5701256. Epub 2008 Jan 24.
22 Frequent DAP kinase but not p14 or Apaf-1 hypermethylation in B-cell chronic lymphocytic leukemia.J Hum Genet. 2006;51(9):832-838. doi: 10.1007/s10038-006-0029-x. Epub 2006 Aug 3.
23 A 2.5-Mb physical map within 3p21.1 spans the breakpoint associated with Greig cephalopolysyndactyly syndrome.Genomics. 1991 Sep;11(1):93-102. doi: 10.1016/0888-7543(91)90105-n.
24 Frequency of genetic and epigenetic alterations of p14ARF and p16INK4A in head and neck cancer in a Hungarian population.Pathol Oncol Res. 2014 Oct;20(4):923-9. doi: 10.1007/s12253-014-9775-9. Epub 2014 Apr 9.
25 Promoter hypermethylation of RAR2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer: A PRISMA-compliant meta-analysis.Medicine (Baltimore). 2018 Dec;97(51):e13666. doi: 10.1097/MD.0000000000013666.
26 Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer.PLoS One. 2016 Mar 17;11(3):e0151516. doi: 10.1371/journal.pone.0151516. eCollection 2016.
27 Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.Front Neural Circuits. 2017 Jun 29;11:47. doi: 10.3389/fncir.2017.00047. eCollection 2017.
28 p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.J Ovarian Res. 2016 Oct 22;9(1):69. doi: 10.1186/s13048-016-0275-2.
29 18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high.BMC Cancer. 2007 May 2;7:72. doi: 10.1186/1471-2407-7-72.
30 Partial tetrasomy with triplication of chromosome (5) (p14-p15.33) in a patient with severe multiple congenital anomalies.Am J Med Genet. 1998 Sep 1;79(2):103-7.
31 Mutual exclusivity analysis of genetic and epigenetic drivers in melanoma identifies a link between p14 ARF and RAR signaling.Mol Cancer Res. 2013 Oct;11(10):1166-78. doi: 10.1158/1541-7786.MCR-13-0006. Epub 2013 Jul 12.
32 Islet biology, the CDKN2A/B locus and type 2 diabetes risk.Diabetologia. 2016 Aug;59(8):1579-93. doi: 10.1007/s00125-016-3967-7. Epub 2016 May 7.
33 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
34 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
35 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
36 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
37 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
38 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
39 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
40 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
41 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
42 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
43 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
44 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.