General Information of Drug Off-Target (DOT) (ID: OTYCJT63)

DOT Name Fibrillin-1 (FBN1)
Gene Name FBN1
Related Disease
Familial thoracic aortic aneurysm and aortic dissection ( )
Marfan syndrome ( )
MASS syndrome ( )
Shprintzen-Goldberg syndrome ( )
Abdominal aortic aneurysm ( )
Acromicric dysplasia ( )
Advanced cancer ( )
Aortic aneurysm ( )
Brachydactyly ( )
Congenital diaphragmatic hernia ( )
Connective tissue disorder ( )
Craniosynostosis ( )
Endometriosis ( )
Fetal growth restriction ( )
Glaucoma/ocular hypertension ( )
Glomerulonephritis ( )
Hereditary disorder of connective tissue ( )
High blood pressure ( )
Liver cirrhosis ( )
Neoplasm ( )
Obesity ( )
Progeroid and marfanoid aspect-lipodystrophy syndrome ( )
Stiff skin syndrome ( )
Weill-Marchesani syndrome 2, dominant ( )
Congenital contractural arachnodactyly ( )
Coronary atherosclerosis ( )
Coronary heart disease ( )
Intellectual disability ( )
Mitral valve prolapse ( )
Geleophysic dysplasia ( )
Isolated ectopia lentis ( )
Neonatal Marfan syndrome ( )
Weill-Marchesani syndrome ( )
Cataract ( )
Ectopia lentis 1, isolated, autosomal dominant ( )
Hyperglycemia ( )
Hyperinsulinemia ( )
Lipodystrophy ( )
Loeys-Dietz syndrome ( )
Non-insulin dependent diabetes ( )
UniProt ID
FBN1_HUMAN
PDB ID
1APJ; 1EMN; 1EMO; 1LMJ; 1UZJ; 1UZK; 1UZP; 1UZQ; 2M74; 2W86; 5MS9
Pfam ID
PF12662 ; PF12947 ; PF07645 ; PF21364 ; PF18193 ; PF14670 ; PF12661 ; PF00683
Sequence
MRRGRLLEIALGFTVLLASYTSHGADANLEAGNVKETRASRAKRRGGGGHDALKGPNVCG
SRYNAYCCPGWKTLPGGNQCIVPICRHSCGDGFCSRPNMCTCPSGQIAPSCGSRSIQHCN
IRCMNGGSCSDDHCLCQKGYIGTHCGQPVCESGCLNGGRCVAPNRCACTYGFTGPQCERD
YRTGPCFTVISNQMCQGQLSGIVCTKTLCCATVGRAWGHPCEMCPAQPHPCRRGFIPNIR
TGACQDVDECQAIPGLCQGGNCINTVGSFECKCPAGHKLNEVSQKCEDIDECSTIPGICE
GGECTNTVSSYFCKCPPGFYTSPDGTRCIDVRPGYCYTALTNGRCSNQLPQSITKMQCCC
DAGRCWSPGVTVAPEMCPIRATEDFNKLCSVPMVIPGRPEYPPPPLGPIPPVLPVPPGFP
PGPQIPVPRPPVEYLYPSREPPRVLPVNVTDYCQLVRYLCQNGRCIPTPGSYRCECNKGF
QLDLRGECIDVDECEKNPCAGGECINNQGSYTCQCRAGYQSTLTRTECRDIDECLQNGRI
CNNGRCINTDGSFHCVCNAGFHVTRDGKNCEDMDECSIRNMCLNGMCINEDGSFKCICKP
GFQLASDGRYCKDINECETPGICMNGRCVNTDGSYRCECFPGLAVGLDGRVCVDTHMRST
CYGGYKRGQCIKPLFGAVTKSECCCASTEYAFGEPCQPCPAQNSAEYQALCSSGPGMTSA
GSDINECALDPDICPNGICENLRGTYKCICNSGYEVDSTGKNCVDINECVLNSLLCDNGQ
CRNTPGSFVCTCPKGFIYKPDLKTCEDIDECESSPCINGVCKNSPGSFICECSSESTLDP
TKTICIETIKGTCWQTVIDGRCEININGATLKSQCCSSLGAAWGSPCTLCQVDPICGKGY
SRIKGTQCEDIDECEVFPGVCKNGLCVNTRGSFKCQCPSGMTLDATGRICLDIRLETCFL
RYEDEECTLPIAGRHRMDACCCSVGAAWGTEECEECPMRNTPEYEELCPRGPGFATKEIT
NGKPFFKDINECKMIPSLCTHGKCRNTIGSFKCRCDSGFALDSEERNCTDIDECRISPDL
CGRGQCVNTPGDFECKCDEGYESGFMMMKNCMDIDECQRDPLLCRGGVCHNTEGSYRCEC
PPGHQLSPNISACIDINECELSAHLCPNGRCVNLIGKYQCACNPGYHSTPDRLFCVDIDE
CSIMNGGCETFCTNSEGSYECSCQPGFALMPDQRSCTDIDECEDNPNICDGGQCTNIPGE
YRCLCYDGFMASEDMKTCVDVNECDLNPNICLSGTCENTKGSFICHCDMGYSGKKGKTGC
TDINECEIGAHNCGKHAVCTNTAGSFKCSCSPGWIGDGIKCTDLDECSNGTHMCSQHADC
KNTMGSYRCLCKEGYTGDGFTCTDLDECSENLNLCGNGQCLNAPGGYRCECDMGFVPSAD
GKACEDIDECSLPNICVFGTCHNLPGLFRCECEIGYELDRSGGNCTDVNECLDPTTCISG
NCVNTPGSYICDCPPDFELNPTRVGCVDTRSGNCYLDIRPRGDNGDTACSNEIGVGVSKA
SCCCSLGKAWGTPCEMCPAVNTSEYKILCPGGEGFRPNPITVILEDIDECQELPGLCQGG
KCINTFGSFQCRCPTGYYLNEDTRVCDDVNECETPGICGPGTCYNTVGNYTCICPPDYMQ
VNGGNNCMDMRRSLCYRNYYADNQTCDGELLFNMTKKMCCCSYNIGRAWNKPCEQCPIPS
TDEFATLCGSQRPGFVIDIYTGLPVDIDECREIPGVCENGVCINMVGSFRCECPVGFFYN
DKLLVCEDIDECQNGPVCQRNAECINTAGSYRCDCKPGYRFTSTGQCNDRNECQEIPNIC
SHGQCIDTVGSFYCLCHTGFKTNDDQTMCLDINECERDACGNGTCRNTIGSFNCRCNHGF
ILSHNNDCIDVDECASGNGNLCRNGQCINTVGSFQCQCNEGYEVAPDGRTCVDINECLLE
PRKCAPGTCQNLDGSYRCICPPGYSLQNEKCEDIDECVEEPEICALGTCSNTEGSFKCLC
PEGFSLSSSGRRCQDLRMSYCYAKFEGGKCSSPKSRNHSKQECCCALKGEGWGDPCELCP
TEPDEAFRQICPYGSGIIVGPDDSAVDMDECKEPDVCKHGQCINTDGSYRCECPFGYILA
GNECVDTDECSVGNPCGNGTCKNVIGGFECTCEEGFEPGPMMTCEDINECAQNPLLCAFR
CVNTYGSYECKCPVGYVLREDRRMCKDEDECEEGKHDCTEKQMECKNLIGTYMCICGPGY
QRRPDGEGCVDENECQTKPGICENGRCLNTRGSYTCECNDGFTASPNQDECLDNREGYCF
TEVLQNMCQIGSSNRNPVTKSECCCDGGRGWGPHCEICPFQGTVAFKKLCPHGRGFMTNG
ADIDECKVIHDVCRNGECVNDRGSYHCICKTGYTPDITGTSCVDLNECNQAPKPCNFICK
NTEGSYQCSCPKGYILQEDGRSCKDLDECATKQHNCQFLCVNTIGGFTCKCPPGFTQHHT
SCIDNNECTSDINLCGSKGICQNTPGSFTCECQRGFSLDQTGSSCEDVDECEGNHRCQHG
CQNIIGGYRCSCPQGYLQHYQWNQCVDENECLSAHICGGASCHNTLGSYKCMCPAGFQYE
QFSGGCQDINECGSAQAPCSYGCSNTEGGYLCGCPPGYFRIGQGHCVSGMGMGRGNPEPP
VSGEMDDNSLSPEACYECKINGYPKRGRKRRSTNETDASNIEDQSETEANVSLASWDVEK
TAIFAFNISHVSNKVRILELLPALTTLTNHNRYLIESGNEDGFFKINQKEGISYLHFTKK
KPVAGTYSLQISSTPLYKKKELNQLEDKYDKDYLSGELGDNLKMKIQVLLH
Function
[Fibrillin-1]: Structural component of the 10-12 nm diameter microfibrils of the extracellular matrix, which conveys both structural and regulatory properties to load-bearing connective tissues. Fibrillin-1-containing microfibrils provide long-term force bearing structural support. In tissues such as the lung, blood vessels and skin, microfibrils form the periphery of the elastic fiber, acting as a scaffold for the deposition of elastin. In addition, microfibrils can occur as elastin-independent networks in tissues such as the ciliary zonule, tendon, cornea and glomerulus where they provide tensile strength and have anchoring roles. Fibrillin-1 also plays a key role in tissue homeostasis through specific interactions with growth factors, such as the bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and latent transforming growth factor-beta-binding proteins (LTBPs), cell-surface integrins and other extracellular matrix protein and proteoglycan components. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively. Negatively regulates osteoclastogenesis by binding and sequestering an osteoclast differentiation and activation factor TNFSF11. This leads to disruption of TNFSF11-induced Ca(2+) signaling and impairment of TNFSF11-mediated nuclear translocation and activation of transcription factor NFATC1 which regulates genes important for osteoclast differentiation and function. Mediates cell adhesion via its binding to cell surface receptors integrins ITGAV:ITGB3 and ITGA5:ITGB1. Binds heparin and this interaction has an important role in the assembly of microfibrils ; [Asprosin]: Adipokine secreted by white adipose tissue that plays an important regulatory role in the glucose metabolism of liver, muscle and pancreas. Hormone that targets the liver in response to fasting to increase plasma glucose levels. Binds the olfactory receptor OR4M1 at the surface of hepatocytes and promotes hepatocyte glucose release by activating the protein kinase A activity in the liver, resulting in rapid glucose release into the circulation. May act as a regulator of adaptive thermogenesis by inhibiting browning and energy consumption, while increasing lipid deposition in white adipose tissue. Also acts as an orexigenic hormone that increases appetite: crosses the blood brain barrier and exerts effects on the hypothalamus. In the arcuate nucleus of the hypothalamus, asprosin directly activates orexigenic AgRP neurons and indirectly inhibits anorexigenic POMC neurons, resulting in appetite stimulation. Activates orexigenic AgRP neurons via binding to the olfactory receptor OR4M1. May also play a role in sperm motility in testis via interaction with OR4M1 receptor.
KEGG Pathway
TGF-beta sig.ling pathway (hsa04350 )
Cytoskeleton in muscle cells (hsa04820 )
Reactome Pathway
Elastic fibre formation (R-HSA-1566948 )
Molecules associated with elastic fibres (R-HSA-2129379 )
Integrin cell surface interactions (R-HSA-216083 )
TGF-beta receptor signaling activates SMADs (R-HSA-2173789 )
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA-381426 )
Post-translational protein phosphorylation (R-HSA-8957275 )
Degradation of the extracellular matrix (R-HSA-1474228 )

Molecular Interaction Atlas (MIA) of This DOT

40 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Familial thoracic aortic aneurysm and aortic dissection DIS069FB Definitive Autosomal dominant [1]
Marfan syndrome DISVEUWZ Definitive Autosomal dominant [1]
MASS syndrome DISI3721 Definitive Autosomal dominant [2]
Shprintzen-Goldberg syndrome DISQH6P3 Definitive Autosomal dominant [3]
Abdominal aortic aneurysm DISD06OF Strong Genetic Variation [4]
Acromicric dysplasia DISMV8M7 Strong Autosomal dominant [5]
Advanced cancer DISAT1Z9 Strong Altered Expression [6]
Aortic aneurysm DISQ5KRA Strong Genetic Variation [7]
Brachydactyly DIS2533F Strong Genetic Variation [8]
Congenital diaphragmatic hernia DIS0IPVU Strong Altered Expression [9]
Connective tissue disorder DISKXBS3 Strong Genetic Variation [7]
Craniosynostosis DIS6J405 Strong Genetic Variation [10]
Endometriosis DISX1AG8 Strong Biomarker [11]
Fetal growth restriction DIS5WEJ5 Strong Altered Expression [12]
Glaucoma/ocular hypertension DISLBXBY Strong Genetic Variation [13]
Glomerulonephritis DISPZIQ3 Strong Biomarker [14]
Hereditary disorder of connective tissue DIS8I9FS Strong Genetic Variation [15]
High blood pressure DISY2OHH Strong Biomarker [16]
Liver cirrhosis DIS4G1GX Strong Biomarker [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Obesity DIS47Y1K Strong Biomarker [19]
Progeroid and marfanoid aspect-lipodystrophy syndrome DISOPKZD Strong Autosomal dominant [20]
Stiff skin syndrome DISM2Z81 Strong Autosomal dominant [21]
Weill-Marchesani syndrome 2, dominant DISQUJI6 Strong Autosomal dominant [22]
Congenital contractural arachnodactyly DISOM1K7 moderate Genetic Variation [23]
Coronary atherosclerosis DISKNDYU moderate Genetic Variation [24]
Coronary heart disease DIS5OIP1 moderate Biomarker [25]
Intellectual disability DISMBNXP moderate Genetic Variation [26]
Mitral valve prolapse DISNCHQ3 moderate Genetic Variation [27]
Geleophysic dysplasia DISZOO1G Supportive Autosomal dominant [28]
Isolated ectopia lentis DISJWTN6 Supportive Autosomal dominant [29]
Neonatal Marfan syndrome DISPXPVM Supportive Autosomal dominant [30]
Weill-Marchesani syndrome DIS9B7CX Supportive Autosomal dominant [31]
Cataract DISUD7SL Limited Biomarker [32]
Ectopia lentis 1, isolated, autosomal dominant DISK44PQ Limited Autosomal dominant [33]
Hyperglycemia DIS0BZB5 Limited Biomarker [34]
Hyperinsulinemia DISIDWT6 Limited Biomarker [35]
Lipodystrophy DIS3SGVD Limited Biomarker [36]
Loeys-Dietz syndrome DIS4FUPZ Limited Genetic Variation [37]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
26 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fibrillin-1 (FBN1). [39]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fibrillin-1 (FBN1). [40]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Fibrillin-1 (FBN1). [41]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Fibrillin-1 (FBN1). [42]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fibrillin-1 (FBN1). [43]
Triclosan DMZUR4N Approved Triclosan increases the expression of Fibrillin-1 (FBN1). [44]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Fibrillin-1 (FBN1). [45]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Fibrillin-1 (FBN1). [43]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Fibrillin-1 (FBN1). [46]
Paclitaxel DMLB81S Approved Paclitaxel increases the expression of Fibrillin-1 (FBN1). [47]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of Fibrillin-1 (FBN1). [48]
Etretinate DM2CZFA Approved Etretinate increases the expression of Fibrillin-1 (FBN1). [49]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Fibrillin-1 (FBN1). [43]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Fibrillin-1 (FBN1). [50]
Guaiacol DMN4E7T Phase 3 Guaiacol decreases the expression of Fibrillin-1 (FBN1). [50]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Fibrillin-1 (FBN1). [50]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Fibrillin-1 (FBN1). [51]
Puerarin DMJIMXH Phase 2 Puerarin decreases the expression of Fibrillin-1 (FBN1). [50]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Fibrillin-1 (FBN1). [53]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Fibrillin-1 (FBN1). [54]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Fibrillin-1 (FBN1). [56]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Fibrillin-1 (FBN1). [57]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Fibrillin-1 (FBN1). [58]
Chlorogenic acid DM2Y3P4 Investigative Chlorogenic acid decreases the expression of Fibrillin-1 (FBN1). [50]
I-BET151 DMYRUH2 Investigative I-BET151 decreases the expression of Fibrillin-1 (FBN1). [53]
PFI-1 DMVFK3J Investigative PFI-1 decreases the expression of Fibrillin-1 (FBN1). [53]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Fibrillin-1 (FBN1). [52]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Fibrillin-1 (FBN1). [55]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993 Aug;17(2):468-75. doi: 10.1006/geno.1993.1349.
3 Decreased extracellular deposition of fibrillin and decorin in neonatal Marfan syndrome fibroblasts. Hum Genet. 1993 Jan;90(5):511-5. doi: 10.1007/BF00217450.
4 Autosomal dominant Marfan syndrome caused by a previously reported recessive FBN1 variant.Mol Genet Genomic Med. 2019 Feb;7(2):e00518. doi: 10.1002/mgg3.518. Epub 2018 Nov 28.
5 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
6 Shift from stochastic to spatially-ordered expression of serine-glycine synthesis enzymes in 3D microtumors.Sci Rep. 2018 Jun 20;8(1):9388. doi: 10.1038/s41598-018-27266-8.
7 Increased frequency of FBN1 frameshift and nonsense mutations in Marfan syndrome patients with aortic dissection.Mol Genet Genomic Med. 2020 Jan;8(1):e1041. doi: 10.1002/mgg3.1041. Epub 2019 Dec 12.
8 FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders.Gene. 2016 Oct 10;591(1):279-291. doi: 10.1016/j.gene.2016.07.033. Epub 2016 Jul 18.
9 Fibrillin-1 Expression Is Decreased in the Diaphragmatic Muscle Connective Tissue of Nitrofen-Induced Congenital Diaphragmatic Hernia.Eur J Pediatr Surg. 2017 Feb;27(1):26-31. doi: 10.1055/s-0036-1587586. Epub 2016 Aug 14.
10 Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome.Nat Genet. 1996 Feb;12(2):209-11. doi: 10.1038/ng0296-209.
11 Molecular evidence for differences in endometrium in severe versus mild endometriosis.Reprod Sci. 2011 Mar;18(3):229-51. doi: 10.1177/1933719110386241. Epub 2010 Nov 9.
12 Asprosin in umbilical cord of newborns and maternal blood of gestational diabetes, preeclampsia, severe preeclampsia, intrauterine growth retardation and macrosemic fetus.Peptides. 2019 Oct;120:170132. doi: 10.1016/j.peptides.2019.170132. Epub 2019 Aug 7.
13 Novel FBN1 mutation causes Marfan syndrome with bilateral ectopia lentis and refractory glaucoma.Eur J Ophthalmol. 2012 Jul-Aug;22(4):667-9. doi: 10.5301/ejo.5000070.
14 Fibrillin-1 regulates mesangial cell attachment, spreading, migration and proliferation.Kidney Int. 2006 Feb;69(3):450-6. doi: 10.1038/sj.ki.5000030.
15 Fibrillin-1 in the Vasculature: In Vivo Accumulation of eGFP-Tagged Fibrillin-1 in a Knockin Mouse Model.Anat Rec (Hoboken). 2020 Jun;303(6):1590-1603. doi: 10.1002/ar.24217. Epub 2019 Jul 13.
16 Screening strategies for hypertension: a systematic review protocol.BMJ Open. 2019 Jan 15;9(1):e025043. doi: 10.1136/bmjopen-2018-025043.
17 Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.Toxicol Sci. 2016 Jan;149(1):67-88. doi: 10.1093/toxsci/kfv214. Epub 2015 Sep 22.
18 Automated Identification of Optimal Portal Venous Phase Timing with Convolutional Neural Networks.Acad Radiol. 2020 Feb;27(2):e10-e18. doi: 10.1016/j.acra.2019.02.024. Epub 2019 May 28.
19 Serum asprosin levels and bariatric surgery outcomes in obese adults.Int J Obes (Lond). 2019 May;43(5):1019-1025. doi: 10.1038/s41366-018-0248-1. Epub 2018 Nov 20.
20 Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3' terminus of the FBN1-gene. Am J Med Genet A. 2010 Nov;152A(11):2749-55. doi: 10.1002/ajmg.a.33690.
21 Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. 2010 Mar 17;2(23):23ra20. doi: 10.1126/scitranslmed.3000488.
22 In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet. 2003 Jan;40(1):34-6. doi: 10.1136/jmg.40.1.34.
23 Structure and function of the mammalian fibrillin gene family: implications for human connective tissue diseases.Mol Genet Metab. 2012 Dec;107(4):635-47. doi: 10.1016/j.ymgme.2012.07.023. Epub 2012 Aug 3.
24 Association Between Stress Testing-Induced Myocardial Ischemia and Clinical Events in Patients With Multivessel Coronary Artery Disease.JAMA Intern Med. 2019 Oct 1;179(10):1345-1351. doi: 10.1001/jamainternmed.2019.2227.
25 Cost-effectiveness of on-pump and off-pump coronary artery bypass grafting for patients with coronary artery disease: Results from the MASS III trial.Int J Cardiol. 2018 Dec 15;273:63-68. doi: 10.1016/j.ijcard.2018.08.044. Epub 2018 Aug 15.
26 Systematic molecular and cytogenetic screening of 100 patients with marfanoid syndromes and intellectual disability. Clin Genet. 2013 Dec;84(6):507-21. doi: 10.1111/cge.12094. Epub 2013 Mar 18.
27 Skeletal manifestations of Marfan syndrome associated to heterozygous R2726W FBN1 variant: sibling case report and literature review.BMC Musculoskelet Disord. 2016 Feb 15;17:79. doi: 10.1186/s12891-016-0935-9.
28 Geleophysic Dysplasia. 2009 Sep 22 [updated 2024 Mar 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
29 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
30 Novel exon nucleotide substitution at the splice junction causes a neonatal Marfan syndrome. Clin Genet. 2010 May;77(5):453-63. doi: 10.1111/j.1399-0004.2009.01337.x. Epub 2010 Feb 4.
31 Weill-Marchesani Syndrome. 2007 Nov 1 [updated 2020 Dec 10]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
32 Results of fibrillin-1 gene analysis in children from inbred families with lens subluxation.J AAPOS. 2014 Apr;18(2):134-9. doi: 10.1016/j.jaapos.2013.11.012.
33 A novel FBN1 mutation in a Chinese family with isolated ectopia lentis. Mol Vis. 2012;18:945-50. Epub 2012 Apr 13.
34 Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions.Biochem J. 2010 Dec 1;432(2):333-41. doi: 10.1042/BJ20100414.
35 Decreased Circulating Levels of Asprosin in Obese Children.Horm Res Paediatr. 2019;91(4):271-277. doi: 10.1159/000500523. Epub 2019 Jun 18.
36 Genetic and molecular mechanism for distinct clinical phenotypes conveyed by allelic truncating mutations implicated in FBN1.Mol Genet Genomic Med. 2020 Jan;8(1):e1023. doi: 10.1002/mgg3.1023. Epub 2019 Nov 27.
37 Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome.Am J Med Genet A. 2018 Mar;176(3):560-569. doi: 10.1002/ajmg.a.38590. Epub 2018 Jan 19.
38 Asprosin attenuates insulin signaling pathway through PKC-activated ER stress and inflammation in skeletal muscle.J Cell Physiol. 2019 Nov;234(11):20888-20899. doi: 10.1002/jcp.28694. Epub 2019 Apr 17.
39 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
40 Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound. Toxicol In Vitro. 2021 Jun;73:105112. doi: 10.1016/j.tiv.2021.105112. Epub 2021 Feb 22.
41 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
42 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
43 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
44 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
45 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
46 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
47 Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009 Aug 21;138(4):645-659. doi: 10.1016/j.cell.2009.06.034. Epub 2009 Aug 13.
48 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
49 The effects of a novel synthetic retinoid, seletinoid G, on the expression of extracellular matrix proteins in aged human skin in vivo. Clin Chim Acta. 2005 Dec;362(1-2):161-9. doi: 10.1016/j.cccn.2005.06.016. Epub 2005 Aug 1.
50 Examining the genomic influence of skin antioxidants in vitro. Mediators Inflamm. 2010;2010.
51 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
52 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
53 BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15713-8. doi: 10.1073/pnas.1522163112. Epub 2015 Dec 7.
54 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
55 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
56 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
57 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
58 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.