General Information of Drug Off-Target (DOT) (ID: OT94Z706)

DOT Name Myosin-9 (MYH9)
Synonyms Cellular myosin heavy chain, type A; Myosin heavy chain 9; Myosin heavy chain, non-muscle IIa; Non-muscle myosin heavy chain A; NMMHC-A; Non-muscle myosin heavy chain IIa; NMMHC II-a; NMMHC-IIA
Gene Name MYH9
Related Disease
Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss ( )
Sickle-cell anaemia ( )
Acute myelogenous leukaemia ( )
Adenocarcinoma ( )
Alport syndrome ( )
Alzheimer disease ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Autosomal dominant macrothrombocytopenia ( )
Autosomal dominant nonsyndromic hearing loss 17 ( )
Bernard-Soulier syndrome ( )
Breast cancer ( )
Breast lobular carcinoma ( )
Breast neoplasm ( )
Cataract ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Deafness ( )
Epithelial ovarian cancer ( )
Glomerulonephritis ( )
Hereditary nephritis ( )
Kidney failure ( )
Lung cancer ( )
Lung carcinoma ( )
Meier-Gorlin syndrome ( )
Metastatic malignant neoplasm ( )
Nasopharyngeal carcinoma ( )
Nephritis ( )
Non-small-cell lung cancer ( )
Obsolete May-Hegglin anomaly ( )
Renal cell carcinoma ( )
Thrombocytopenia ( )
Thrombocytopenia 2 ( )
Type-1/2 diabetes ( )
Gastric cancer ( )
Inherited bleeding disorder, platelet-type ( )
Metabolic acidosis ( )
Pancreatic cancer ( )
Stomach cancer ( )
Autosomal dominant nonsyndromic hearing loss ( )
High blood pressure ( )
Advanced cancer ( )
Breast carcinoma ( )
Diabetic kidney disease ( )
Lupus nephritis ( )
Non-insulin dependent diabetes ( )
UniProt ID
MYH9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LNK; 3ZWH; 4CFQ; 4CFR; 4ETO
Pfam ID
PF00063 ; PF02736 ; PF01576
Sequence
MAQQAADKYLYVDKNFINNPLAQADWAAKKLVWVPSDKSGFEPASLKEEVGEEAIVELVE
NGKKVKVNKDDIQKMNPPKFSKVEDMAELTCLNEASVLHNLKERYYSGLIYTYSGLFCVV
INPYKNLPIYSEEIVEMYKGKKRHEMPPHIYAITDTAYRSMMQDREDQSILCTGESGAGK
TENTKKVIQYLAYVASSHKSKKDQGELERQLLQANPILEAFGNAKTVKNDNSSRFGKFIR
INFDVNGYIVGANIETYLLEKSRAIRQAKEERTFHIFYYLLSGAGEHLKTDLLLEPYNKY
RFLSNGHVTIPGQQDKDMFQETMEAMRIMGIPEEEQMGLLRVISGVLQLGNIVFKKERNT
DQASMPDNTAAQKVSHLLGINVTDFTRGILTPRIKVGRDYVQKAQTKEQADFAIEALAKA
TYERMFRWLVLRINKALDKTKRQGASFIGILDIAGFEIFDLNSFEQLCINYTNEKLQQLF
NHTMFILEQEEYQREGIEWNFIDFGLDLQPCIDLIEKPAGPPGILALLDEECWFPKATDK
SFVEKVMQEQGTHPKFQKPKQLKDKADFCIIHYAGKVDYKADEWLMKNMDPLNDNIATLL
HQSSDKFVSELWKDVDRIIGLDQVAGMSETALPGAFKTRKGMFRTVGQLYKEQLAKLMAT
LRNTNPNFVRCIIPNHEKKAGKLDPHLVLDQLRCNGVLEGIRICRQGFPNRVVFQEFRQR
YEILTPNSIPKGFMDGKQACVLMIKALELDSNLYRIGQSKVFFRAGVLAHLEEERDLKIT
DVIIGFQACCRGYLARKAFAKRQQQLTAMKVLQRNCAAYLKLRNWQWWRLFTKVKPLLQV
SRQEEEMMAKEEELVKVREKQLAAENRLTEMETLQSQLMAEKLQLQEQLQAETELCAEAE
ELRARLTAKKQELEEICHDLEARVEEEEERCQHLQAEKKKMQQNIQELEEQLEEEESARQ
KLQLEKVTTEAKLKKLEEEQIILEDQNCKLAKEKKLLEDRIAEFTTNLTEEEEKSKSLAK
LKNKHEAMITDLEERLRREEKQRQELEKTRRKLEGDSTDLSDQIAELQAQIAELKMQLAK
KEEELQAALARVEEEAAQKNMALKKIRELESQISELQEDLESERASRNKAEKQKRDLGEE
LEALKTELEDTLDSTAAQQELRSKREQEVNILKKTLEEEAKTHEAQIQEMRQKHSQAVEE
LAEQLEQTKRVKANLEKAKQTLENERGELANEVKVLLQGKGDSEHKRKKVEAQLQELQVK
FNEGERVRTELADKVTKLQVELDNVTGLLSQSDSKSSKLTKDFSALESQLQDTQELLQEE
NRQKLSLSTKLKQVEDEKNSFREQLEEEEEAKHNLEKQIATLHAQVADMKKKMEDSVGCL
ETAEEVKRKLQKDLEGLSQRHEEKVAAYDKLEKTKTRLQQELDDLLVDLDHQRQSACNLE
KKQKKFDQLLAEEKTISAKYAEERDRAEAEAREKETKALSLARALEEAMEQKAELERLNK
QFRTEMEDLMSSKDDVGKSVHELEKSKRALEQQVEEMKTQLEELEDELQATEDAKLRLEV
NLQAMKAQFERDLQGRDEQSEEKKKQLVRQVREMEAELEDERKQRSMAVAARKKLEMDLK
DLEAHIDSANKNRDEAIKQLRKLQAQMKDCMRELDDTRASREEILAQAKENEKKLKSMEA
EMIQLQEELAAAERAKRQAQQERDELADEIANSSGKGALALEEKRRLEARIAQLEEELEE
EQGNTELINDRLKKANLQIDQINTDLNLERSHAQKNENARQQLERQNKELKVKLQEMEGT
VKSKYKASITALEAKIAQLEEQLDNETKERQAACKQVRRTEKKLKDVLLQVDDERRNAEQ
YKDQADKASTRLKQLKRQLEEAEEEAQRANASRRKLQRELEDATETADAMNREVSSLKNK
LRRGDLPFVVPRRMARKGAGDGSDEEVDGKADGAEAKPAE
Function
Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis. Promotes cell motility in conjunction with S100A4. During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10.
Tissue Specificity In the kidney, expressed in the glomeruli. Also expressed in leukocytes.
KEGG Pathway
Vascular smooth muscle contraction (hsa04270 )
Tight junction (hsa04530 )
Regulation of actin cytoskeleton (hsa04810 )
Motor proteins (hsa04814 )
Cytoskeleton in muscle cells (hsa04820 )
Pathogenic Escherichia coli infection (hsa05130 )
Reactome Pathway
Regulation of actin dynamics for phagocytic cup formation (R-HSA-2029482 )
EPHA-mediated growth cone collapse (R-HSA-3928663 )
Sema4D induced cell migration and growth-cone collapse (R-HSA-416572 )
RHO GTPases activate PKNs (R-HSA-5625740 )
RHO GTPases activate CIT (R-HSA-5625900 )
RHO GTPases Activate ROCKs (R-HSA-5627117 )
RHO GTPases activate PAKs (R-HSA-5627123 )
Sensory processing of sound by inner hair cells of the cochlea (R-HSA-9662360 )
Sensory processing of sound by outer hair cells of the cochlea (R-HSA-9662361 )
CD163 mediating an anti-inflammatory response (R-HSA-9662834 )
FCGR3A-mediated phagocytosis (R-HSA-9664422 )
Signaling by ALK fusions and activated point mutants (R-HSA-9725370 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

46 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss DIS0R0IY Definitive Autosomal dominant [1]
Sickle-cell anaemia DIS5YNZB Definitive Genetic Variation [2]
Acute myelogenous leukaemia DISCSPTN Strong Altered Expression [3]
Adenocarcinoma DIS3IHTY Strong Altered Expression [4]
Alport syndrome DIS25AB4 Strong Genetic Variation [5]
Alzheimer disease DISF8S70 Strong Altered Expression [6]
Arteriosclerosis DISK5QGC Strong Genetic Variation [7]
Atherosclerosis DISMN9J3 Strong Genetic Variation [7]
Autosomal dominant macrothrombocytopenia DISUTMSW Strong Genetic Variation [8]
Autosomal dominant nonsyndromic hearing loss 17 DISYYOQH Strong Autosomal dominant [9]
Bernard-Soulier syndrome DISLD1FU Strong Genetic Variation [10]
Breast cancer DIS7DPX1 Strong Altered Expression [11]
Breast lobular carcinoma DISBY98Q Strong Biomarker [12]
Breast neoplasm DISNGJLM Strong Biomarker [12]
Cataract DISUD7SL Strong Biomarker [13]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [14]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [15]
Deafness DISKCLH4 Strong Genetic Variation [16]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [17]
Glomerulonephritis DISPZIQ3 Strong Altered Expression [18]
Hereditary nephritis DISECBR1 Strong Biomarker [19]
Kidney failure DISOVQ9P Strong Genetic Variation [20]
Lung cancer DISCM4YA Strong Biomarker [21]
Lung carcinoma DISTR26C Strong Biomarker [21]
Meier-Gorlin syndrome DISCFIU3 Strong Genetic Variation [22]
Metastatic malignant neoplasm DIS86UK6 Strong Genetic Variation [23]
Nasopharyngeal carcinoma DISAOTQ0 Strong Biomarker [24]
Nephritis DISQZQ70 Strong Genetic Variation [25]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [4]
Obsolete May-Hegglin anomaly DISM4VFR Strong Autosomal dominant [26]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [14]
Thrombocytopenia DISU61YW Strong Genetic Variation [27]
Thrombocytopenia 2 DISBLVLV Strong Genetic Variation [28]
Type-1/2 diabetes DISIUHAP Strong Biomarker [29]
Gastric cancer DISXGOUK moderate Biomarker [30]
Inherited bleeding disorder, platelet-type DISIUNXT moderate Biomarker [31]
Metabolic acidosis DIS7UMEC moderate Biomarker [32]
Pancreatic cancer DISJC981 moderate Altered Expression [33]
Stomach cancer DISKIJSX moderate Biomarker [30]
Autosomal dominant nonsyndromic hearing loss DISYC1G0 Supportive Autosomal dominant [34]
High blood pressure DISY2OHH Disputed Genetic Variation [35]
Advanced cancer DISAT1Z9 Limited Biomarker [36]
Breast carcinoma DIS2UE88 Limited Altered Expression [11]
Diabetic kidney disease DISJMWEY Limited Biomarker [37]
Lupus nephritis DISCVGPZ Limited Genetic Variation [38]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Myosin-9 (MYH9). [40]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Myosin-9 (MYH9). [60]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Myosin-9 (MYH9). [62]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Myosin-9 (MYH9). [63]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Myosin-9 (MYH9). [62]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Myosin-9 (MYH9). [41]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Myosin-9 (MYH9). [42]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Myosin-9 (MYH9). [43]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Myosin-9 (MYH9). [44]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Myosin-9 (MYH9). [45]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Myosin-9 (MYH9). [41]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Myosin-9 (MYH9). [46]
Quercetin DM3NC4M Approved Quercetin increases the expression of Myosin-9 (MYH9). [47]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Myosin-9 (MYH9). [48]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Myosin-9 (MYH9). [49]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Myosin-9 (MYH9). [50]
Selenium DM25CGV Approved Selenium increases the expression of Myosin-9 (MYH9). [51]
Rosiglitazone DMILWZR Approved Rosiglitazone affects the expression of Myosin-9 (MYH9). [52]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Myosin-9 (MYH9). [53]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Myosin-9 (MYH9). [54]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Myosin-9 (MYH9). [55]
APR-246 DMNFADH Phase 2 APR-246 affects the expression of Myosin-9 (MYH9). [57]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Myosin-9 (MYH9). [58]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Myosin-9 (MYH9). [59]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Myosin-9 (MYH9). [61]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Myosin-9 (MYH9). [50]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Myosin-9 (MYH9). [64]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Myosin-9 (MYH9). [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB increases the metabolism of Myosin-9 (MYH9). [56]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 In vivo Modeling Implicates APOL1 in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress.PLoS Genet. 2015 Jul 6;11(7):e1005349. doi: 10.1371/journal.pgen.1005349. eCollection 2015 Jul.
3 Prognostic impact of MYH9 expression on patients with acute myeloid leukemia.Oncotarget. 2017 Jan 3;8(1):156-163. doi: 10.18632/oncotarget.10613.
4 Prognostic significance of MYH9 expression in resected non-small cell lung cancer.PLoS One. 2015 Mar 31;10(3):e0121460. doi: 10.1371/journal.pone.0121460. eCollection 2015.
5 Autosomal dominant progressive nephropathy with deafness: linkage to a new locus on chromosome 11q24.J Am Soc Nephrol. 2003 Jul;14(7):1794-803. doi: 10.1097/01.asn.0000071513.73427.97.
6 Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process.Neurobiol Aging. 2017 May;53:59-66. doi: 10.1016/j.neurobiolaging.2017.01.011. Epub 2017 Jan 18.
7 The MYH9/APOL1 region and chronic kidney disease in European-Americans.Hum Mol Genet. 2011 Jun 15;20(12):2450-6. doi: 10.1093/hmg/ddr118. Epub 2011 Mar 23.
8 Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome).Blood. 2001 Feb 15;97(4):1147-9. doi: 10.1182/blood.v97.4.1147.
9 Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet. 2000 Nov;67(5):1121-8. doi: 10.1016/S0002-9297(07)62942-5. Epub 2000 Oct 9.
10 Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene.Hum Genet. 2010 Sep;128(3):345-50. doi: 10.1007/s00439-010-0861-0. Epub 2010 Jul 16.
11 TFPI-2 suppresses breast cancer cell proliferation and invasion through regulation of ERK signaling and interaction with actinin-4 and myosin-9.Sci Rep. 2018 Sep 26;8(1):14402. doi: 10.1038/s41598-018-32698-3.
12 Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma.Nat Genet. 2017 Aug;49(8):1219-1230. doi: 10.1038/ng.3905. Epub 2017 Jun 26.
13 MYH9-related disorders: report on a patient of Greek origin presenting with macroscopic hematuria and presenile cataract, caused by an R1165C mutation.J Pediatr Hematol Oncol. 2012 Aug;34(6):412-5. doi: 10.1097/MPH.0b013e318257a64b.
14 NMMHC-IIA-dependent nuclear location of CXCR4 promotes migration and invasion in renal cell carcinoma.Oncol Rep. 2016 Nov;36(5):2681-2688. doi: 10.3892/or.2016.5082. Epub 2016 Sep 12.
15 MYH9 Promotes Growth and Metastasis via Activation of MAPK/AKT Signaling in Colorectal Cancer.J Cancer. 2019 Jan 29;10(4):874-884. doi: 10.7150/jca.27635. eCollection 2019.
16 Hearing impairment locus heterogeneity and identification of PLS1 as a new autosomal dominant gene in Hungarian Roma. Eur J Hum Genet. 2019 Jun;27(6):869-878. doi: 10.1038/s41431-019-0372-y. Epub 2019 Mar 14.
17 MYH9 overexpression correlates with clinicopathological parameters and poor prognosis of epithelial ovarian cancer.Oncol Lett. 2019 Aug;18(2):1049-1056. doi: 10.3892/ol.2019.10406. Epub 2019 May 27.
18 Advances in the understanding of MYH9 disorders.Curr Opin Hematol. 2010 Sep;17(5):405-10. doi: 10.1097/MOH.0b013e32833c069c.
19 Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium.Nat Genet. 2000 Sep;26(1):103-5. doi: 10.1038/79063.
20 Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias.Haemophilia. 2017 Sep;23(5):673-681. doi: 10.1111/hae.13255. Epub 2017 Jun 8.
21 Quantitative proteomic analysis identifies CPNE3 as a novel metastasis-promoting gene in NSCLC.J Proteome Res. 2013 Jul 5;12(7):3423-33. doi: 10.1021/pr400273z. Epub 2013 Jun 6.
22 Clinical manifestation and molecular genetic characterization of MYH9 disorders.Platelets. 2009 Aug;20(5):289-96. doi: 10.1080/09537100902993022.
23 MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer.PLoS One. 2011 Apr 18;6(4):e18409. doi: 10.1371/journal.pone.0018409.
24 Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9.Signal Transduct Target Ther. 2019 Nov 18;4:48. doi: 10.1038/s41392-019-0084-3. eCollection 2019.
25 Cellular force assay detects altered contractility caused by a nephritis-associated mutation in nonmuscle myosin IIA.Dev Growth Differ. 2017 Jun;59(5):423-433. doi: 10.1111/dgd.12379. Epub 2017 Jul 17.
26 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
27 Identification of a Novel MYH9 Mutation in a Young Adult With Inherited Thrombocytopenia and Recurrent Seizures by Targeted Exome Sequencing.J Pediatr Hematol Oncol. 2020 Apr;42(3):e188-e192. doi: 10.1097/MPH.0000000000001430.
28 MYH9-Related Thrombocytopenia: Four Novel Variants Affecting the Tail Domain of the Non-Muscle Myosin Heavy Chain IIA Associated with a Mild Clinical Evolution of the Disorder.Hamostaseologie. 2019 Feb;39(1):87-94. doi: 10.1055/s-0038-1645840. Epub 2018 Jul 11.
29 Polymorphisms in the non-muscle myosin heavy chain gene (MYH9) are associated with lower glomerular filtration rate in mixed ancestry diabetic subjects from South Africa.PLoS One. 2012;7(12):e52529. doi: 10.1371/journal.pone.0052529. Epub 2012 Dec 20.
30 LncRNA HULC promotes the progression of gastric cancer by regulating miR-9-5p/MYH9 axis.Biomed Pharmacother. 2020 Jan;121:109607. doi: 10.1016/j.biopha.2019.109607. Epub 2019 Nov 11.
31 Thrombin generation in two families with MYH9-related platelet disorder.Platelets. 2016;27(3):264-7. doi: 10.3109/09537104.2015.1064882. Epub 2015 Aug 6.
32 Proteomic profiling of the effect of metabolic acidosis on the apical membrane of the proximal convoluted tubule.Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1465-77. doi: 10.1152/ajprenal.00390.2011. Epub 2012 Feb 22.
33 Targeting Mechanoresponsive Proteins in Pancreatic Cancer: 4-Hydroxyacetophenone Blocks Dissemination and Invasion by Activating MYH14.Cancer Res. 2019 Sep 15;79(18):4665-4678. doi: 10.1158/0008-5472.CAN-18-3131. Epub 2019 Jul 29.
34 Genetic Hearing Loss Overview. 1999 Feb 14 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
35 Association of MYH9 Polymorphisms with Hypertension in Patients with Chronic Kidney Disease in China.Kidney Blood Press Res. 2016;41(6):956-965. doi: 10.1159/000452597. Epub 2016 Dec 8.
36 Myosin Heavy Chain 9: Oncogene or Tumor Suppressor Gene?.Med Sci Monit. 2019 Jan 31;25:888-892. doi: 10.12659/MSM.912320.
37 Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease.Sci Rep. 2019 May 22;9(1):7679. doi: 10.1038/s41598-019-44194-3.
38 MYH9 and APOL1 gene polymorphisms and the risk of CKD in patients with lupus nephritis from an admixture population.PLoS One. 2014 Mar 21;9(3):e87716. doi: 10.1371/journal.pone.0087716. eCollection 2014.
39 MYH9 gene polymorphisms may be associated with cerebrovascular blood flow in patients with type 2 diabetes.Genet Mol Res. 2015 Feb 6;14(1):1008-16. doi: 10.4238/2015.February.6.4.
40 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
41 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
42 Benzodithiophenes potentiate differentiation of acute promyelocytic leukemia cells by lowering the threshold for ligand-mediated corepressor/coactivator exchange with retinoic acid receptor alpha and enhancing changes in all-trans-retinoic acid-regulated gene expression. Cancer Res. 2005 Sep 1;65(17):7856-65. doi: 10.1158/0008-5472.CAN-05-1056.
43 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
44 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
45 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
46 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
47 Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis. Int J Cancer. 2004 Mar 20;109(2):220-9. doi: 10.1002/ijc.11692.
48 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
49 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
50 Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology. 2015 Sep;50:56-70.
51 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
52 Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring). 2010 Jan;18(1):27-34. doi: 10.1038/oby.2009.208. Epub 2009 Jun 25.
53 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
54 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
55 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
56 Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci. 2018 Apr 1;162(2):429-438. doi: 10.1093/toxsci/kfx265.
57 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
58 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
59 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
60 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
61 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
62 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
63 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
64 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
65 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.