General Information of Drug Off-Target (DOT) (ID: OTK80FYN)

DOT Name Cell migration-inducing and hyaluronan-binding protein (CEMIP)
Synonyms EC 3.2.1.35; Hyaluronan binding protein involved in hyaluronan depolymerization
Gene Name CEMIP
Related Disease
Thyroid gland papillary carcinoma ( )
Adenoma ( )
Advanced cancer ( )
Breast neoplasm ( )
Clear cell renal carcinoma ( )
Colon carcinoma ( )
Colonic neoplasm ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Epithelial ovarian cancer ( )
Gastric cancer ( )
Matthew-Wood syndrome ( )
Multiple sclerosis ( )
Neoplasm ( )
Nervous system inflammation ( )
Non-small-cell lung cancer ( )
Oral cancer ( )
Osteoarthritis ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic ductal carcinoma ( )
Pneumonia ( )
Pneumonitis ( )
Prostate cancer ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
Retinoblastoma ( )
Rheumatoid arthritis ( )
Stomach cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Metastatic malignant neoplasm ( )
Colon cancer ( )
Invasive breast carcinoma ( )
Nonsyndromic genetic hearing loss ( )
Acute myelogenous leukaemia ( )
Adenocarcinoma ( )
Hepatocellular carcinoma ( )
Human papillomavirus infection ( )
Pancreatic cancer ( )
Triple negative breast cancer ( )
UniProt ID
CEMIP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.2.1.35
Pfam ID
PF10162 ; PF15711 ; PF13330
Sequence
MGAAGRQDFLFKAMLTISWLTLTCFPGATSTVAAGCPDQSPELQPWNPGHDQDHHVHIGQ
GKTLLLTSSATVYSIHISEGGKLVIKDHDEPIVLRTRHILIDNGGELHAGSALCPFQGNF
TIILYGRADEGIQPDPYYGLKYIGVGKGGALELHGQKKLSWTFLNKTLHPGGMAEGGYFF
ERSWGHRGVIVHVIDPKSGTVIHSDRFDTYRSKKESERLVQYLNAVPDGRILSVAVNDEG
SRNLDDMARKAMTKLGSKHFLHLGFRHPWSFLTVKGNPSSSVEDHIEYHGHRGSAAARVF
KLFQTEHGEYFNVSLSSEWVQDVEWTEWFDHDKVSQTKGGEKISDLWKAHPGKICNRPID
IQATTMDGVNLSTEVVYKKGQDYRFACYDRGRACRSYRVRFLCGKPVRPKLTVTIDTNVN
STILNLEDNVQSWKPGDTLVIASTDYSMYQAEEFQVLPCRSCAPNQVKVAGKPMYLHIGE
EIDGVDMRAEVGLLSRNIIVMGEMEDKCYPYRNHICNFFDFDTFGGHIKFALGFKAAHLE
GTELKHMGQQLVGQYPIHFHLAGDVDERGGYDPPTYIRDLSIHHTFSRCVTVHGSNGLLI
KDVVGYNSLGHCFFTEDGPEERNTFDHCLGLLVKSGTLLPSDRDSKMCKMITEDSYPGYI
PKPRQDCNAVSTFWMANPNNNLINCAAAGSEETGFWFIFHHVPTGPSVGMYSPGYSEHIP
LGKFYNNRAHSNYRAGMIIDNGVKTTEASAKDKRPFLSIISARYSPHQDADPLKPREPAI
IRHFIAYKNQDHGAWLRGGDVWLDSCRFADNGIGLTLASGGTFPYDDGSKQEIKNSLFVG
ESGNVGTEMMDNRIWGPGGLDHSGRTLPIGQNFPIRGIQLYDGPINIQNCTFRKFVALEG
RHTSALAFRLNNAWQSCPHNNVTGIAFEDVPITSRVFFGEPGPWFNQLDMDGDKTSVFHD
VDGSVSEYPGSYLTKNDNWLVRHPDCINVPDWRGAICSGCYAQMYIQAYKTSNLRMKIIK
NDFPSHPLYLEGALTRSTHYQQYQPVVTLQKGYTIHWDQTAPAELAIWLINFNKGDWIRV
GLCYPRGTTFSILSDVHNRLLKQTSKTGVFVRTLQMDKVEQSYPGRSHYYWDEDSGLLFL
KLKAQNEREKFAFCSMKGCERIKIKALIPKNAGVSDCTATAYPKFTERAVVDVPMPKKLF
GSQLKTKDHFLEVKMESSKQHFFHLWNDFAYIEVDGKKYPSSEDGIQVVVIDGNQGRVVS
HTSFRNSILQGIPWQLFNYVATIPDNSIVLMASKGRYVSRGPWTRVLEKLGADRGLKLKE
QMAFVGFKGSFRPIWVTLDTEDHKAKIFQVVPIPVVKKKKL
Function
Mediates depolymerization of hyaluronic acid (HA) via the cell membrane-associated clathrin-coated pit endocytic pathway. Binds to hyaluronic acid. Hydrolyzes high molecular weight hyaluronic acid to produce an intermediate-sized product, a process that may occur through rapid vesicle endocytosis and recycling without intracytoplasmic accumulation or digestion in lysosomes. Involved in hyaluronan catabolism in the dermis of the skin and arthritic synovium. Positively regulates epithelial-mesenchymal transition (EMT), and hence tumor cell growth, invasion and cancer dissemination. In collaboration with HSPA5/BIP, promotes cancer cell migration in a calcium and PKC-dependent manner. May be involved in hearing.
Tissue Specificity
Expressed in dermal and in synovial fibroblasts. Strongly expressed in gastric cancers compared with the paired normal tissues. Strongly expressed in both ductal carcinoma and invasive breast cancer cells compared with benign epithelial cells (at protein level). Strongly expressed in brain, placenta, prostate, breast, lung and testis. Expressed in fibroblasts, epithelial cells and cancer cells. In ear, it is specifically expressed in inner ear. Expressed in cochlea and vestibule tissues. Strongly expressed in gastric cancers compared with the paired normal tissues. Strongly expressed in colon adenocarcinomas compared with normal colonic mucosas. Strongly expressed in breast cancer as compared to normal breast tissue.
Reactome Pathway
Hyaluronan biosynthesis and export (R-HSA-2142850 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Thyroid gland papillary carcinoma DIS48YMM Definitive Biomarker [1]
Adenoma DIS78ZEV Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Breast neoplasm DISNGJLM Strong Altered Expression [3]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [4]
Colon carcinoma DISJYKUO Strong Biomarker [5]
Colonic neoplasm DISSZ04P Strong Biomarker [5]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [6]
Colorectal neoplasm DISR1UCN Strong Altered Expression [7]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [8]
Gastric cancer DISXGOUK Strong Biomarker [9]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [10]
Multiple sclerosis DISB2WZI Strong Altered Expression [11]
Neoplasm DISZKGEW Strong Biomarker [12]
Nervous system inflammation DISB3X5A Strong Biomarker [11]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [13]
Oral cancer DISLD42D Strong Biomarker [14]
Osteoarthritis DIS05URM Strong Altered Expression [15]
Ovarian cancer DISZJHAP Strong Biomarker [8]
Ovarian neoplasm DISEAFTY Strong Biomarker [8]
Pancreatic ductal carcinoma DIS26F9Q Strong Altered Expression [10]
Pneumonia DIS8EF3M Strong Biomarker [16]
Pneumonitis DIS88E0K Strong Biomarker [16]
Prostate cancer DISF190Y Strong Altered Expression [17]
Prostate carcinoma DISMJPLE Strong Altered Expression [17]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [4]
Retinoblastoma DISVPNPB Strong Biomarker [18]
Rheumatoid arthritis DISTSB4J Strong Altered Expression [19]
Stomach cancer DISKIJSX Strong Biomarker [9]
Breast cancer DIS7DPX1 moderate Biomarker [12]
Breast carcinoma DIS2UE88 moderate Biomarker [12]
Metastatic malignant neoplasm DIS86UK6 moderate Biomarker [20]
Colon cancer DISVC52G Disputed Biomarker [21]
Invasive breast carcinoma DISANYTW Disputed Altered Expression [22]
Nonsyndromic genetic hearing loss DISZX61P Disputed Autosomal recessive [23]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [24]
Adenocarcinoma DIS3IHTY Limited Altered Expression [25]
Hepatocellular carcinoma DIS0J828 Limited Biomarker [26]
Human papillomavirus infection DISX61LX Limited Altered Expression [27]
Pancreatic cancer DISJC981 Limited Biomarker [28]
Triple negative breast cancer DISAMG6N Limited Biomarker [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [29]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [30]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [31]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [32]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [33]
Quercetin DM3NC4M Approved Quercetin affects the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [34]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [35]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [36]
Triclosan DMZUR4N Approved Triclosan increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [37]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [38]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [39]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [40]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [42]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [43]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [45]
Octanal DMTN0OK Investigative Octanal increases the expression of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Cell migration-inducing and hyaluronan-binding protein (CEMIP). [44]
------------------------------------------------------------------------------------

References

1 KIAA1199, a Target of MicoRNA-486-5p, Promotes Papillary Thyroid Cancer Invasion by Influencing Epithelial-Mesenchymal Transition (EMT).Med Sci Monit. 2019 Sep 10;25:6788-6796. doi: 10.12659/MSM.918682.
2 Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing.PLoS One. 2012;7(1):e29059. doi: 10.1371/journal.pone.0029059. Epub 2012 Jan 19.
3 Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness.BMC Cancer. 2014 Mar 15;14:194. doi: 10.1186/1471-2407-14-194.
4 Upregulation of the KIAA1199 gene is associated with cellular mortality.Cancer Lett. 2006 Jul 28;239(1):71-7. doi: 10.1016/j.canlet.2005.07.028. Epub 2005 Sep 12.
5 Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival.Oncotarget. 2015 Oct 13;6(31):30500-15. doi: 10.18632/oncotarget.5921.
6 Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression in vitro.World J Gastroenterol. 2019 Apr 14;25(14):1697-1714. doi: 10.3748/wjg.v25.i14.1697.
7 Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors.PLoS One. 2013 Jul 23;8(7):e69473. doi: 10.1371/journal.pone.0069473. Print 2013.
8 CEMIP promotes ovarian cancer development and progression via the PI3K/AKT signaling pathway.Biomed Pharmacother. 2019 Jun;114:108787. doi: 10.1016/j.biopha.2019.108787. Epub 2019 Mar 27.
9 The miR-29c-KIAA1199 axis regulates gastric cancer migration by binding with WBP11 and PTP4A3.Oncogene. 2019 Apr;38(17):3134-3150. doi: 10.1038/s41388-018-0642-0. Epub 2019 Jan 9.
10 KIAA1199 is induced by inflammation and enhances malignant phenotype in pancreatic cancer.Oncotarget. 2017 Mar 7;8(10):17156-17163. doi: 10.18632/oncotarget.15052.
11 KIAA1199 expression and hyaluronan degradation colocalize in multiple sclerosis lesions.Glycobiology. 2018 Dec 1;28(12):958-967. doi: 10.1093/glycob/cwy064.
12 H3K27me3 loss plays a vital role in CEMIP mediated carcinogenesis and progression of breast cancer with poor prognosis.Biomed Pharmacother. 2020 Mar;123:109728. doi: 10.1016/j.biopha.2019.109728. Epub 2019 Dec 14.
13 KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT.J Mol Med (Berl). 2019 Jan;97(1):127-140. doi: 10.1007/s00109-018-1721-y. Epub 2018 Nov 26.
14 Comparative proteomic analysis of oral squamous cell carcinoma and adjacent non-tumour tissue from Thailand.Arch Oral Biol. 2013 Nov;58(11):1677-85. doi: 10.1016/j.archoralbio.2013.08.002. Epub 2013 Aug 13.
15 CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes.Cell Death Dis. 2019 Feb 4;10(2):103. doi: 10.1038/s41419-019-1377-8.
16 Pulmonary phenotype of CCSP/UG deficient mice: a consequence of CCSP deficiency or altered Clara cell function?.Ann N Y Acad Sci. 2000;923:202-9. doi: 10.1111/j.1749-6632.2000.tb05531.x.
17 Long noncoding RNA HCP5 promotes prostate cancer cell proliferation by acting as the sponge of miR?656 to modulate CEMIP expression.Oncol Rep. 2020 Jan;43(1):328-336. doi: 10.3892/or.2019.7404. Epub 2019 Nov 8.
18 Knockdown of CEMIP suppresses proliferation and induces apoptosis in colorectal cancer cells: downregulation of GRP78 and attenuation of unfolded protein response.Biochem Cell Biol. 2018 Jun;96(3):332-341. doi: 10.1139/bcb-2017-0151. Epub 2017 Oct 12.
19 Expression and function of microRNA-188-5p in activated rheumatoid arthritis synovial fibroblasts.Int J Clin Exp Pathol. 2015 May 1;8(5):4953-62. eCollection 2015.
20 KIAA1199 promotes metastasis of colorectal cancer cells via microtubule destabilization regulated by a PP2A/stathmin pathway.Oncogene. 2019 Feb;38(7):935-949. doi: 10.1038/s41388-018-0493-8. Epub 2018 Sep 10.
21 The Endosomal Protein CEMIP Links WNT Signaling to MEK1-ERK1/2 Activation in Selumetinib-Resistant Intestinal Organoids.Cancer Res. 2018 Aug 15;78(16):4533-4548. doi: 10.1158/0008-5472.CAN-17-3149. Epub 2018 Jun 18.
22 Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration.J Natl Cancer Inst. 2013 Sep 18;105(18):1402-16. doi: 10.1093/jnci/djt224. Epub 2013 Aug 29.
23 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
24 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
25 Repression of KIAA1199 attenuates Wnt-signalling and decreases the proliferation of colon cancer cells.Br J Cancer. 2011 Aug 9;105(4):552-61. doi: 10.1038/bjc.2011.268. Epub 2011 Jul 19.
26 KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program.Cancer Lett. 2019 Jul 10;454:78-89. doi: 10.1016/j.canlet.2019.03.049. Epub 2019 Apr 11.
27 NF-B-induced KIAA1199 promotes survival through EGFR signalling.Nat Commun. 2014 Nov 4;5:5232. doi: 10.1038/ncomms6232.
28 Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer.Sci Rep. 2018 Feb 21;8(1):3383. doi: 10.1038/s41598-018-21823-x.
29 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
30 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
31 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
32 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
33 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
34 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
35 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
36 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
37 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
38 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
39 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
40 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
41 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
42 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
43 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
44 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
45 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
46 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.