General Information of Drug Off-Target (DOT) (ID: OTVRR73T)

DOT Name Heat shock protein 105 kDa (HSPH1)
Synonyms Antigen NY-CO-25; Heat shock 110 kDa protein
Gene Name HSPH1
Related Disease
Adenocarcinoma ( )
Adult lymphoma ( )
Advanced cancer ( )
Alzheimer disease ( )
B-cell lymphoma ( )
B-cell neoplasm ( )
Breast neoplasm ( )
Carcinoma of esophagus ( )
Clear cell renal carcinoma ( )
Colitis ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Coronary heart disease ( )
Esophageal cancer ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Hepatocellular carcinoma ( )
HIV infectious disease ( )
Immunodeficiency ( )
Lymphoma ( )
Lymphoma, non-Hodgkin, familial ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Non-hodgkin lymphoma ( )
Pediatric lymphoma ( )
Renal cell carcinoma ( )
Tauopathy ( )
Gonorrhea ( )
Stomach cancer ( )
Age-related macular degeneration ( )
Breast cancer ( )
Breast carcinoma ( )
Colon adenocarcinoma ( )
Kennedy disease ( )
Melanoma ( )
UniProt ID
HS105_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6GFA
Pfam ID
PF00012
Sequence
MSVVGLDVGSQSCYIAVARAGGIETIANEFSDRCTPSVISFGSKNRTIGVAAKNQQITHA
NNTVSNFKRFHGRAFNDPFIQKEKENLSYDLVPLKNGGVGIKVMYMGEEHLFSVEQITAM
LLTKLKETAENSLKKPVTDCVISVPSFFTDAERRSVLDAAQIVGLNCLRLMNDMTAVALN
YGIYKQDLPSLDEKPRIVVFVDMGHSAFQVSACAFNKGKLKVLGTAFDPFLGGKNFDEKL
VEHFCAEFKTKYKLDAKSKIRALLRLYQECEKLKKLMSSNSTDLPLNIECFMNDKDVSGK
MNRSQFEELCAELLQKIEVPLYSLLEQTHLKVEDVSAVEIVGGATRIPAVKERIAKFFGK
DISTTLNADEAVARGCALQCAILSPAFKVREFSVTDAVPFPISLIWNHDSEDTEGVHEVF
SRNHAAPFSKVLTFLRRGPFELEAFYSDPQGVPYPEAKIGRFVVQNVSAQKDGEKSRVKV
KVRVNTHGIFTISTASMVEKVPTEENEMSSEADMECLNQRPPENPDTDKNVQQDNSEAGT
QPQVQTDAQQTSQSPPSPELTSEENKIPDADKANEKKVDQPPEAKKPKIKVVNVELPIEA
NLVWQLGKDLLNMYIETEGKMIMQDKLEKERNDAKNAVEEYVYEFRDKLCGPYEKFICEQ
DHQNFLRLLTETEDWLYEEGEDQAKQAYVDKLEELMKIGTPVKVRFQEAEERPKMFEELG
QRLQHYAKIAADFRNKDEKYNHIDESEMKKVEKSVNEVMEWMNNVMNAQAKKSLDQDPVV
RAQEIKTKIKELNNTCEPVVTQPKPKIESPKLERTPNGPNIDKKEEDLEDKNNFGAEPPH
QNGECYPNEKNSVNMDLD
Function
Acts as a nucleotide-exchange factor (NEF) for chaperone proteins HSPA1A and HSPA1B, promoting the release of ADP from HSPA1A/B thereby triggering client/substrate protein release. Prevents the aggregation of denatured proteins in cells under severe stress, on which the ATP levels decrease markedly. Inhibits HSPA8/HSC70 ATPase and chaperone activities.
Tissue Specificity Highly expressed in testis. Present at lower levels in most brain regions, except cerebellum. Overexpressed in cancer cells.
KEGG Pathway
Protein processing in endoplasmic reticulum (hsa04141 )
Reactome Pathway
Regulation of HSF1-mediated heat shock response (R-HSA-3371453 )
Scavenging by Class F Receptors (R-HSA-3000484 )

Molecular Interaction Atlas (MIA) of This DOT

37 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Strong Biomarker [1]
Adult lymphoma DISK8IZR Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Genetic Variation [3]
Alzheimer disease DISF8S70 Strong Altered Expression [4]
B-cell lymphoma DISIH1YQ Strong Altered Expression [5]
B-cell neoplasm DISVY326 Strong Altered Expression [6]
Breast neoplasm DISNGJLM Strong Biomarker [7]
Carcinoma of esophagus DISS6G4D Strong Biomarker [8]
Clear cell renal carcinoma DISBXRFJ Strong Biomarker [9]
Colitis DISAF7DD Strong Genetic Variation [10]
Colon cancer DISVC52G Strong Altered Expression [11]
Colon carcinoma DISJYKUO Strong Altered Expression [11]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [3]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [12]
Coronary heart disease DIS5OIP1 Strong Biomarker [13]
Esophageal cancer DISGB2VN Strong Biomarker [8]
Esophageal squamous cell carcinoma DIS5N2GV Strong Biomarker [14]
Gastric cancer DISXGOUK Strong Genetic Variation [15]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [16]
HIV infectious disease DISO97HC Strong Biomarker [17]
Immunodeficiency DIS093I0 Strong Biomarker [2]
Lymphoma DISN6V4S Strong Altered Expression [2]
Lymphoma, non-Hodgkin, familial DISCXYIZ Strong Biomarker [2]
Neoplasm DISZKGEW Strong Biomarker [8]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [8]
Non-hodgkin lymphoma DISS2Y8A Strong Biomarker [2]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [2]
Renal cell carcinoma DISQZ2X8 Strong Biomarker [9]
Tauopathy DISY2IPA Strong Altered Expression [4]
Gonorrhea DISQ5AO6 moderate Biomarker [18]
Stomach cancer DISKIJSX moderate Biomarker [18]
Age-related macular degeneration DIS0XS2C Limited Biomarker [19]
Breast cancer DIS7DPX1 Limited Biomarker [20]
Breast carcinoma DIS2UE88 Limited Biomarker [20]
Colon adenocarcinoma DISDRE0J Limited Altered Expression [21]
Kennedy disease DISXZVM1 Limited Altered Expression [22]
Melanoma DIS1RRCY Limited Biomarker [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Heat shock protein 105 kDa (HSPH1) affects the binding of PEITC. [52]
------------------------------------------------------------------------------------
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Heat shock protein 105 kDa (HSPH1). [23]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Heat shock protein 105 kDa (HSPH1). [24]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Heat shock protein 105 kDa (HSPH1). [25]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Heat shock protein 105 kDa (HSPH1). [26]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Heat shock protein 105 kDa (HSPH1). [27]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Heat shock protein 105 kDa (HSPH1). [28]
Quercetin DM3NC4M Approved Quercetin increases the expression of Heat shock protein 105 kDa (HSPH1). [29]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Heat shock protein 105 kDa (HSPH1). [30]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Heat shock protein 105 kDa (HSPH1). [31]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Heat shock protein 105 kDa (HSPH1). [32]
Marinol DM70IK5 Approved Marinol decreases the expression of Heat shock protein 105 kDa (HSPH1). [33]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Heat shock protein 105 kDa (HSPH1). [34]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Heat shock protein 105 kDa (HSPH1). [35]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Heat shock protein 105 kDa (HSPH1). [36]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Heat shock protein 105 kDa (HSPH1). [37]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Heat shock protein 105 kDa (HSPH1). [38]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Heat shock protein 105 kDa (HSPH1). [39]
Thalidomide DM70BU5 Approved Thalidomide increases the expression of Heat shock protein 105 kDa (HSPH1). [40]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Heat shock protein 105 kDa (HSPH1). [39]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate increases the expression of Heat shock protein 105 kDa (HSPH1). [41]
Ritonavir DMU764S Approved Ritonavir increases the expression of Heat shock protein 105 kDa (HSPH1). [42]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Heat shock protein 105 kDa (HSPH1). [43]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Heat shock protein 105 kDa (HSPH1). [38]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Heat shock protein 105 kDa (HSPH1). [45]
Eugenol DM7US1H Patented Eugenol increases the expression of Heat shock protein 105 kDa (HSPH1). [37]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Heat shock protein 105 kDa (HSPH1). [47]
Celastrol DMWQIJX Preclinical Celastrol increases the expression of Heat shock protein 105 kDa (HSPH1). [48]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Heat shock protein 105 kDa (HSPH1). [49]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Heat shock protein 105 kDa (HSPH1). [37]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Heat shock protein 105 kDa (HSPH1). [50]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Heat shock protein 105 kDa (HSPH1). [51]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Heat shock protein 105 kDa (HSPH1). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Heat shock protein 105 kDa (HSPH1). [44]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Heat shock protein 105 kDa (HSPH1). [46]
------------------------------------------------------------------------------------

References

1 Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays.J Pathol. 2004 Jul;203(3):798-807. doi: 10.1002/path.1584.
2 Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target.Blood. 2011 Oct 20;118(16):4421-30. doi: 10.1182/blood-2011-06-364570. Epub 2011 Aug 22.
3 Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy.Cell Death Differ. 2020 Jan;27(1):117-129. doi: 10.1038/s41418-019-0343-4. Epub 2019 May 8.
4 Loss of Hsp110 leads to age-dependent tau hyperphosphorylation and early accumulation of insoluble amyloid beta.Mol Cell Biol. 2010 Oct;30(19):4626-43. doi: 10.1128/MCB.01493-09. Epub 2010 Aug 2.
5 HSP110 sustains chronic NF-B signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization.Blood. 2018 Aug 2;132(5):510-520. doi: 10.1182/blood-2017-12-819706. Epub 2018 Jun 5.
6 HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma.Blood. 2015 Mar 12;125(11):1768-71. doi: 10.1182/blood-2014-07-590034. Epub 2015 Jan 8.
7 HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice.J Immunol. 2003 Oct 15;171(8):4054-61. doi: 10.4049/jimmunol.171.8.4054.
8 Heat shock protein 105 peptide vaccine could induce antitumor immune reactions in a phase I clinical trial.Cancer Sci. 2019 Oct;110(10):3049-3060. doi: 10.1111/cas.14165. Epub 2019 Sep 19.
9 Evaluation of renal cell carcinoma vaccines targeting carbonic anhydrase IX using heat shock protein 110.Cancer Immunol Immunother. 2007 Jul;56(7):1097-105. doi: 10.1007/s00262-006-0258-z. Epub 2006 Dec 5.
10 Protective mucosal immunity mediated by epithelial CD1d and IL-10.Nature. 2014 May 22;509(7501):497-502. doi: 10.1038/nature13150. Epub 2014 Apr 6.
11 HSP110 promotes colorectal cancer growth through STAT3 activation.Oncogene. 2017 Apr 20;36(16):2328-2336. doi: 10.1038/onc.2016.403. Epub 2016 Nov 7.
12 Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracilbased chemotherapy.Gastroenterology. 2014 Feb;146(2):401-11.e1. doi: 10.1053/j.gastro.2013.10.054.
13 Screening hub genes in coronary artery disease based on integrated analysis.Cardiol J. 2018;25(3):403-411. doi: 10.5603/CJ.a2017.0106. Epub 2017 Oct 5.
14 The protein-protein interaction network and clinical significance of heat-shock proteins in esophageal squamous cell carcinoma.Amino Acids. 2018 Jun;50(6):685-697. doi: 10.1007/s00726-018-2569-8. Epub 2018 Apr 27.
15 Deletion in HSP110 T(17): correlation with wild-type HSP110 expression and prognostic significance in microsatellite-unstable advanced gastric cancers.Hum Pathol. 2017 Sep;67:109-118. doi: 10.1016/j.humpath.2017.08.001. Epub 2017 Aug 12.
16 Apg-2 has a chaperone-like activity similar to Hsp110 and is overexpressed in hepatocellular carcinomas.FEBS Lett. 2004 Feb 27;560(1-3):19-24. doi: 10.1016/S0014-5793(04)00034-1.
17 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
18 Nuclear heat shock protein 110 expression is associated with poor prognosis and hyperthermo-chemotherapy resistance in gastric cancer patients with peritoneal metastasis.World J Gastroenterol. 2017 Nov 14;23(42):7541-7550. doi: 10.3748/wjg.v23.i42.7541.
19 Validated Prediction Models for Macular Degeneration Progression and Predictors of Visual Acuity Loss Identify High-Risk Individuals.Am J Ophthalmol. 2019 Feb;198:223-261. doi: 10.1016/j.ajo.2018.10.022. Epub 2018 Oct 31.
20 HSP105 recruits protein phosphatase 2A to dephosphorylate -catenin.Mol Cell Biol. 2015 Apr;35(8):1390-400. doi: 10.1128/MCB.01307-14. Epub 2015 Feb 2.
21 Gene cloning of immunogenic antigens overexpressed in pancreatic cancer.Biochem Biophys Res Commun. 2001 Mar 9;281(4):936-44. doi: 10.1006/bbrc.2001.4377.
22 Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease.Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16801-6. doi: 10.1073/pnas.0506249102. Epub 2005 Oct 31.
23 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
24 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
25 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
26 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
27 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
28 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
29 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
30 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
31 Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol Biol Rep. 2008 Sep;35(3):421-9.
32 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
33 Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett. 2005 Aug 14;158(2):95-107.
34 The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4706-19. doi: 10.1167/iovs.06-1147.
35 Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro. 2009 Oct;23(7):1387-95.
36 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
37 Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro. 2013 Dec;27(8):2213-24. doi: 10.1016/j.tiv.2013.08.007. Epub 2013 Aug 30.
38 Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol. 2014 Mar;88(3):673-89.
39 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
40 Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells. Lipids Health Dis. 2010 Jun 2;9:56. doi: 10.1186/1476-511X-9-56.
41 Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics. 2004 Jan 15;16(2):204-11.
42 Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact. 2016 Aug 5;255:31-44.
43 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
44 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
45 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
46 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
47 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
48 Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006 Oct;10(4):321-30.
49 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
50 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
51 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
52 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.