General Information of Drug Off-Target (DOT) (ID: OT0Y6PTU)

DOT Name Probable global transcription activator SNF2L1 (SMARCA1)
Synonyms EC 3.6.4.-; ATP-dependent helicase SMARCA1; Nucleosome-remodeling factor subunit SNF2L; SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 1
Gene Name SMARCA1
Related Disease
Alpha thalassemia-X-linked intellectual disability syndrome ( )
Childhood acute lymphoblastic leukemia ( )
Endometrial carcinoma ( )
Pancreatic cancer ( )
Small-cell lung cancer ( )
Undifferentiated carcinoma ( )
Burkitt lymphoma ( )
Clear cell renal carcinoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Gastric cancer ( )
Glioma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Intellectual disability ( )
Lung cancer ( )
Lung carcinoma ( )
Malignant rhabdoid tumour ( )
Melanoma ( )
Neoplasm ( )
Neurodevelopmental disorder ( )
Non-small-cell lung cancer ( )
Parkinson disease ( )
Prostate neoplasm ( )
Renal cell carcinoma ( )
Retinoblastoma ( )
Squamous cell carcinoma ( )
Acute myelogenous leukaemia ( )
Autism ( )
Breast cancer ( )
Breast carcinoma ( )
Coffin-Siris syndrome ( )
Glioblastoma multiforme ( )
Lung adenocarcinoma ( )
Prostate cancer ( )
Carcinoma ( )
Prostate carcinoma ( )
Alcohol dependence ( )
Corpus callosum, agenesis of ( )
leukaemia ( )
Leukemia ( )
Malignant soft tissue neoplasm ( )
Renal carcinoma ( )
Sarcoma ( )
Schizophrenia ( )
X-linked intellectual disability ( )
UniProt ID
SMCA1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.6.4.-
Pfam ID
PF09110 ; PF00271 ; PF09111 ; PF00176
Sequence
MEQDTAAVAATVAAADATATIVVIEDEQPGPSTSQEEGAAAAATEATAATEKGEKKKEKN
VSSFQLKLAAKAPKSEKEMDPEYEEKMKADRAKRFEFLLKQTELFAHFIQPSAQKSPTSP
LNMKLGRPRIKKDEKQSLISAGDYRHRRTEQEEDEELLSESRKTSNVCIRFEVSPSYVKG
GPLRDYQIRGLNWLISLYENGVNGILADEMGLGKTLQTIALLGYLKHYRNIPGPHMVLVP
KSTLHNWMNEFKRWVPSLRVICFVGDKDARAAFIRDEMMPGEWDVCVTSYEMVIKEKSVF
KKFHWRYLVIDEAHRIKNEKSKLSEIVREFKSTNRLLLTGTPLQNNLHELWALLNFLLPD
VFNSADDFDSWFDTKNCLGDQKLVERLHAVLKPFLLRRIKTDVEKSLPPKKEIKIYLGLS
KMQREWYTKILMKDIDVLNSSGKMDKMRLLNILMQLRKCCNHPYLFDGAEPGPPYTTDEH
IVSNSGKMVVLDKLLAKLKEQGSRVLIFSQMTRLLDILEDYCMWRGYEYCRLDGQTPHEE
REDKFLEVEFLGQREAIEAFNAPNSSKFIFMLSTRAGGLGINLASADVVILYDSDWNPQV
DLQAMDRAHRIGQKKPVRVFRLITDNTVEERIVERAEIKLRLDSIVIQQGRLIDQQSNKL
AKEEMLQMIRHGATHVFASKESELTDEDITTILERGEKKTAEMNERLQKMGESSLRNFRM
DIEQSLYKFEGEDYREKQKLGMVEWIEPPKRERKANYAVDAYFREALRVSEPKIPKAPRP
PKQPNVQDFQFFPPRLFELLEKEILYYRKTIGYKVPRNPDIPNPALAQREEQKKIDGAEP
LTPEETEEKEKLLTQGFTNWTKRDFNQFIKANEKYGRDDIDNIAREVEGKSPEEVMEYSA
VFWERCNELQDIEKIMAQIERGEARIQRRISIKKALDAKIARYKAPFHQLRIQYGTSKGK
NYTEEEDRFLICMLHKMGFDRENVYEELRQCVRNAPQFRFDWFIKSRTAMEFQRRCNTLI
SLIEKENMEIEERERAEKKKRATKTPMVKFSAFS
Function
[Isoform 1]: Catalytically inactive when either DNA or nucleosomes are the substrate and does not possess chromatin-remodeling activity. Acts as a negative regulator of chromatin remodelers by generating inactive complexes ; [Isoform 2]: Helicase that possesses intrinsic ATP-dependent chromatin-remodeling activity. ATPase activity is substrate-dependent, and is increased when nucleosomes are the substrate, but is also catalytically active when DNA alone is the substrate. Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair. Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template. Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes. The BAZ1A-, BAZ1B-, BAZ2A- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template. The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template. Within the NURF-1 and CERF-1 ISWI chromatin remodeling complexes, nucleosomes are the preferred substrate for its ATPase activity. Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development. May promote neurite outgrowth. May be involved in the development of luteal cells.
Tissue Specificity .Mainly expressed in non-neuronal tissues such as lung, breast, kidney, and ovary.; [Isoform 2]: Expressed in lung, breast, kidney, ovary, skeletal muscle and brain.
KEGG Pathway
ATP-dependent chromatin remodeling (hsa03082 )

Molecular Interaction Atlas (MIA) of This DOT

47 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alpha thalassemia-X-linked intellectual disability syndrome DISV7OEV Definitive Biomarker [1]
Childhood acute lymphoblastic leukemia DISJ5D6U Definitive Biomarker [2]
Endometrial carcinoma DISXR5CY Definitive Altered Expression [3]
Pancreatic cancer DISJC981 Definitive Genetic Variation [4]
Small-cell lung cancer DISK3LZD Definitive Altered Expression [5]
Undifferentiated carcinoma DISIAZST Definitive Biomarker [3]
Burkitt lymphoma DIS9D5XU Strong Biomarker [6]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [7]
Colon cancer DISVC52G Strong Biomarker [8]
Colon carcinoma DISJYKUO Strong Biomarker [8]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [9]
Gastric cancer DISXGOUK Strong Biomarker [10]
Glioma DIS5RPEH Strong Biomarker [11]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [12]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [13]
Intellectual disability DISMBNXP Strong Biomarker [14]
Lung cancer DISCM4YA Strong Genetic Variation [15]
Lung carcinoma DISTR26C Strong Genetic Variation [15]
Malignant rhabdoid tumour DIS46HZU Strong Genetic Variation [16]
Melanoma DIS1RRCY Strong Altered Expression [17]
Neoplasm DISZKGEW Strong Biomarker [18]
Neurodevelopmental disorder DIS372XH Strong Genetic Variation [19]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [20]
Parkinson disease DISQVHKL Strong Biomarker [21]
Prostate neoplasm DISHDKGQ Strong Biomarker [22]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [7]
Retinoblastoma DISVPNPB Strong Biomarker [23]
Squamous cell carcinoma DISQVIFL Strong Altered Expression [24]
Acute myelogenous leukaemia DISCSPTN moderate Biomarker [25]
Autism DISV4V1Z moderate Biomarker [26]
Breast cancer DIS7DPX1 moderate Biomarker [27]
Breast carcinoma DIS2UE88 moderate Biomarker [27]
Coffin-Siris syndrome DIS8L03H moderate Genetic Variation [28]
Glioblastoma multiforme DISK8246 moderate Genetic Variation [29]
Lung adenocarcinoma DISD51WR moderate Altered Expression [30]
Prostate cancer DISF190Y moderate Biomarker [22]
Carcinoma DISH9F1N Disputed Genetic Variation [31]
Prostate carcinoma DISMJPLE Disputed Biomarker [32]
Alcohol dependence DIS4ZSCO Limited Biomarker [33]
Corpus callosum, agenesis of DISO9P40 Limited Altered Expression [34]
leukaemia DISS7D1V Limited Biomarker [35]
Leukemia DISNAKFL Limited Biomarker [35]
Malignant soft tissue neoplasm DISTC6NO Limited Biomarker [36]
Renal carcinoma DISER9XT Limited Biomarker [37]
Sarcoma DISZDG3U Limited Biomarker [36]
Schizophrenia DISSRV2N Limited Unknown [38]
X-linked intellectual disability DISYJBY3 Limited X-linked [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [40]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [41]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [42]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [43]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Probable global transcription activator SNF2L1 (SMARCA1). [44]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [45]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [46]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [47]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the mutagenesis of Probable global transcription activator SNF2L1 (SMARCA1). [48]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [51]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Probable global transcription activator SNF2L1 (SMARCA1). [46]
Choline DM5D9YK Investigative Choline affects the expression of Probable global transcription activator SNF2L1 (SMARCA1). [52]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Probable global transcription activator SNF2L1 (SMARCA1). [49]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Probable global transcription activator SNF2L1 (SMARCA1). [50]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Probable global transcription activator SNF2L1 (SMARCA1). [50]
------------------------------------------------------------------------------------

References

1 X-linked -thalassemia with mental retardation is downstream of protein kinase A in the meiotic cell cycle signaling cascade in Xenopus oocytes and is dynamically regulated in response to DNA damage?"O'Shea LC. Hensey C."
2 SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation.Nat Genet. 2017 Feb;49(2):289-295. doi: 10.1038/ng.3746. Epub 2016 Dec 12.
3 Undifferentiated Endometrial Carcinomas Show Frequent Loss of Core Switch/Sucrose Nonfermentable Complex Proteins.Am J Surg Pathol. 2018 Jan;42(1):76-83. doi: 10.1097/PAS.0000000000000941.
4 Genetic variants in the SWI/SNF complex and smoking collaborate to modify the risk of pancreatic cancer in a Chinese population.Mol Carcinog. 2015 Sep;54(9):761-8. doi: 10.1002/mc.22140. Epub 2014 Feb 28.
5 Identification of key modules and hub genes for small-cell lung carcinoma and large-cell neuroendocrine lung carcinoma by weighted gene co-expression network analysis of clinical tissue-proteomes.PLoS One. 2019 Jun 5;14(6):e0217105. doi: 10.1371/journal.pone.0217105. eCollection 2019.
6 The mutational landscape of Burkitt-like lymphoma with 11q aberration is distinct from that of Burkitt lymphoma.Blood. 2019 Feb 28;133(9):962-966. doi: 10.1182/blood-2018-07-864025. Epub 2018 Dec 19.
7 SWI/SNF protein expression status in fumarate hydratase-deficient renal cell carcinoma: immunohistochemical analysis of 32 tumors from 28 patients.Hum Pathol. 2018 Jul;77:139-146. doi: 10.1016/j.humpath.2018.04.004. Epub 2018 Apr 22.
8 DNA hypermethylation and histone hypoacetylation of the HLTF gene are associated with reduced expression in gastric carcinoma.Cancer Sci. 2003 Aug;94(8):692-8. doi: 10.1111/j.1349-7006.2003.tb01504.x.
9 LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3.Mol Cancer. 2018 Aug 11;17(1):118. doi: 10.1186/s12943-018-0873-2.
10 Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis.J Pathol. 2016 Jul;239(3):245-9. doi: 10.1002/path.4731. Epub 2016 May 20.
11 The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells.Sci Rep. 2017 Apr 18;7(1):889. doi: 10.1038/s41598-017-00982-3.
12 Genetic variant in SWI/SNF complexes influences hepatocellular carcinoma risk: a new clue for the contribution of chromatin remodeling in carcinogenesis.Sci Rep. 2014 Feb 21;4:4147. doi: 10.1038/srep04147.
13 Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma.Contrast Media Mol Imaging. 2017 Jun 21;2017:9265098. doi: 10.1155/2017/9265098. eCollection 2017.
14 Patient with anomalous skin pigmentation expands the phenotype of ARID2 loss-of-function disorder, a SWI/SNF-related intellectual disability.Am J Med Genet A. 2019 May;179(5):808-812. doi: 10.1002/ajmg.a.61075. Epub 2019 Mar 5.
15 Author Correction: Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer.Nat Med. 2018 Oct;24(10):1627. doi: 10.1038/s41591-018-0173-9.
16 MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors.Cancer Res. 2019 May 1;79(9):2404-2414. doi: 10.1158/0008-5472.CAN-18-3066. Epub 2019 Feb 12.
17 High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer.Cell Rep. 2017 Oct 17;21(3):773-783. doi: 10.1016/j.celrep.2017.09.085.
18 Paraneoplastic disorders associated with miscellaneous neoplasms with focus on selected soft tissue and Undifferentiated/ rhabdoid malignancies.Semin Diagn Pathol. 2019 Jul;36(4):269-278. doi: 10.1053/j.semdp.2019.02.001. Epub 2019 Feb 20.
19 A Syndromic Neurodevelopmental Disorder Caused by Mutations in SMARCD1, a Core SWI/SNF Subunit Needed for Context-Dependent Neuronal Gene Regulation in Flies. Am J Hum Genet. 2019 Apr 4;104(4):596-610. doi: 10.1016/j.ajhg.2019.02.001. Epub 2019 Mar 14.
20 Targeting of BRM Sensitizes BRG1-Mutant Lung Cancer Cell Lines to Radiotherapy.Mol Cancer Ther. 2019 Mar;18(3):656-666. doi: 10.1158/1535-7163.MCT-18-0067. Epub 2018 Nov 26.
21 Signal Alteration of Substantia Nigra on 3.0T Susceptibility-weighted Imaging in Parkinson's Disease and Vascular Parkinsonism.Curr Med Sci. 2019 Oct;39(5):831-835. doi: 10.1007/s11596-019-2113-4. Epub 2019 Oct 14.
22 The long tail of oncogenic drivers in prostate cancer.Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
23 Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling.J Biol Chem. 2002 Feb 15;277(7):4782-9. doi: 10.1074/jbc.M109532200. Epub 2001 Nov 21.
24 SMARCA4 and SMARCA2 deficiency in non-small cell lung cancer: immunohistochemical survey of 316 consecutive specimens.Ann Diagn Pathol. 2017 Feb;26:47-51. doi: 10.1016/j.anndiagpath.2016.10.006. Epub 2016 Oct 20.
25 SMARCB1 Deficiency Integrates Epigenetic Signals to Oncogenic Gene Expression Program Maintenance in Human Acute Myeloid Leukemia.Mol Cancer Res. 2018 May;16(5):791-804. doi: 10.1158/1541-7786.MCR-17-0493. Epub 2018 Feb 26.
26 Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.Genome Res. 2017 Apr;27(4):591-600. doi: 10.1101/gr.216309.116. Epub 2017 Mar 22.
27 BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1.Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1210-9. doi: 10.1073/pnas.1418335112. Epub 2015 Mar 2.
28 Extending the clinical and genetic spectrum of ARID2 related intellectual disability. A case series of 7 patients.Eur J Med Genet. 2019 Jan;62(1):27-34. doi: 10.1016/j.ejmg.2018.04.014. Epub 2018 Apr 23.
29 Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis.Eur J Radiol. 2019 Oct;119:108634. doi: 10.1016/j.ejrad.2019.08.003. Epub 2019 Aug 9.
30 Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma.Cancer Res. 2017 Apr 1;77(7):1719-1729. doi: 10.1158/0008-5472.CAN-16-2159. Epub 2017 Feb 15.
31 Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology.Histopathology. 2017 Feb;70(3):359-366. doi: 10.1111/his.13091. Epub 2016 Nov 16.
32 The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex.Nat Genet. 2013 Nov;45(11):1392-8. doi: 10.1038/ng.2771. Epub 2013 Sep 29.
33 Variation in SWI/SNF Chromatin Remodeling Complex Proteins is Associated with Alcohol Dependence and Antisocial Behavior in Human Populations.Alcohol Clin Exp Res. 2017 Dec;41(12):2033-2040. doi: 10.1111/acer.13514. Epub 2017 Oct 27.
34 Advanced adenoid cystic carcinoma (ACC) is featured by SWI/SNF chromatin remodeling complex aberrations.J Cancer Res Clin Oncol. 2019 Jan;145(1):201-211. doi: 10.1007/s00432-018-2783-5. Epub 2018 Oct 31.
35 The roles of SNF2/SWI2 nucleosome remodeling enzymes in blood cell differentiation and leukemia.Biomed Res Int. 2015;2015:347571. doi: 10.1155/2015/347571. Epub 2015 Feb 19.
36 Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: mechanisms and therapeutic opportunities.J Pathol. 2018 Apr;244(5):638-649. doi: 10.1002/path.5042. Epub 2018 Mar 6.
37 The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma.Am J Pathol. 2013 Apr;182(4):1163-70. doi: 10.1016/j.ajpath.2013.01.007. Epub 2013 Feb 12.
38 Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry. 2016 Dec;21(12):1690-1695. doi: 10.1038/mp.2016.24. Epub 2016 Mar 22.
39 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
40 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
41 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
42 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
43 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
44 Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006 Dec 1;66(23):11187-93. doi: 10.1158/0008-5472.CAN-06-1274.
45 Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer. 2004 Nov 1;112(2):200-12. doi: 10.1002/ijc.20401.
46 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
47 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
48 Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014 Dec;775-776:48-54. doi: 10.1016/j.mrgentox.2014.10.011. Epub 2014 Nov 4.
49 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
50 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
51 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
52 Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not. Am J Clin Nutr. 2007 Jul;86(1):230-9. doi: 10.1093/ajcn/86.1.230.