General Information of Drug Off-Target (DOT) (ID: OT1YZSP3)

DOT Name Serine/threonine-protein kinase STK11 (STK11)
Synonyms EC 2.7.11.1; Liver kinase B1; LKB1; hLKB1; Renal carcinoma antigen NY-REN-19
Gene Name STK11
Related Disease
Familial pancreatic carcinoma ( )
Hereditary neoplastic syndrome ( )
Hyperthyroidism ( )
Lung neoplasm ( )
Nasal polyp ( )
Pancreatic adenocarcinoma ( )
Peutz-Jeghers syndrome ( )
Renal cell carcinoma ( )
Carcinoma ( )
Colorectal carcinoma ( )
Cutaneous melanoma ( )
Endometrium neoplasm ( )
Epithelial ovarian cancer ( )
Hamartoma ( )
Hepatocellular carcinoma ( )
High blood pressure ( )
Lung cancer ( )
Metastatic malignant neoplasm ( )
Metastatic melanoma ( )
Neoplasm of esophagus ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Pancreatic tumour ( )
Polyp ( )
Polyposis ( )
Squamous cell carcinoma ( )
Stomach cancer ( )
Testicular cancer ( )
Testicular germ cell tumor ( )
Endometrial cancer ( )
Lung adenocarcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Ankylosing spondylitis ( )
Crohn disease ( )
Gastric cancer ( )
Melanoma ( )
Neoplasm of testis ( )
Obesity ( )
Pancreatic cancer ( )
Psoriasis ( )
Sclerosing cholangitis ( )
Ulcerative colitis ( )
Familial ovarian cancer ( )
UniProt ID
STK11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2WTK; 4ZDR; 5WXN
EC Number
2.7.11.1
Pfam ID
PF00069
Sequence
MEVVDPQQLGMFTEGELMSVGMDTFIHRIDSTEVIYQPRRKRAKLIGKYLMGDLLGEGSY
GKVKEVLDSETLCRRAVKILKKKKLRRIPNGEANVKKEIQLLRRLRHKNVIQLVDVLYNE
EKQKMYMVMEYCVCGMQEMLDSVPEKRFPVCQAHGYFCQLIDGLEYLHSQGIVHKDIKPG
NLLLTTGGTLKISDLGVAEALHPFAADDTCRTSQGSPAFQPPEIANGLDTFSGFKVDIWS
AGVTLYNITTGLYPFEGDNIYKLFENIGKGSYAIPGDCGPPLSDLLKGMLEYEPAKRFSI
RQIRQHSWFRKKHPPAEAPVPIPPSPDTKDRWRSMTVVPYLEDLHGADEDEDLFDIEDDI
IYTQDFTVPGQVPEEEASHNGQRRGLPKAVCMNGTEAAQLSTKSRAEGRAPNPARKACSA
SSKIRRLSACKQQ
Function
Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with NUAK1, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair ; [Isoform 2]: Has a role in spermiogenesis.
Tissue Specificity Ubiquitously expressed. Strongest expression in testis and fetal liver.
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
Autophagy - animal (hsa04140 )
mTOR sig.ling pathway (hsa04150 )
PI3K-Akt sig.ling pathway (hsa04151 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Tight junction (hsa04530 )
Adipocytokine sig.ling pathway (hsa04920 )
Reactome Pathway
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
FOXO-mediated transcription of cell death genes (R-HSA-9614657 )
AMPK inhibits chREBP transcriptional activation activity (R-HSA-163680 )

Molecular Interaction Atlas (MIA) of This DOT

44 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Familial pancreatic carcinoma DIS1XROR Definitive Autosomal dominant [1]
Hereditary neoplastic syndrome DISGXLG5 Definitive Genetic Variation [2]
Hyperthyroidism DISX87ZH Definitive Biomarker [3]
Lung neoplasm DISVARNB Definitive Biomarker [4]
Nasal polyp DISLP3XE Definitive Genetic Variation [5]
Pancreatic adenocarcinoma DISKHX7S Definitive Biomarker [6]
Peutz-Jeghers syndrome DISF27ZJ Definitive Autosomal dominant [7]
Renal cell carcinoma DISQZ2X8 Definitive Biomarker [8]
Carcinoma DISH9F1N Strong Altered Expression [9]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [10]
Cutaneous melanoma DIS3MMH9 Strong Posttranslational Modification [11]
Endometrium neoplasm DIS6OS2L Strong Biomarker [12]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [13]
Hamartoma DIS0I87H Strong Altered Expression [14]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [15]
High blood pressure DISY2OHH Strong Altered Expression [16]
Lung cancer DISCM4YA Strong Genetic Variation [17]
Metastatic malignant neoplasm DIS86UK6 Strong Altered Expression [18]
Metastatic melanoma DISSL43L Strong Biomarker [19]
Neoplasm of esophagus DISOLKAQ Strong Biomarker [20]
Ovarian cancer DISZJHAP Strong Biomarker [21]
Ovarian neoplasm DISEAFTY Strong Biomarker [21]
Pancreatic tumour DIS3U0LK Strong Biomarker [22]
Polyp DISRSLYF Strong Biomarker [23]
Polyposis DISZSPOK Strong Genetic Variation [24]
Squamous cell carcinoma DISQVIFL Strong Biomarker [25]
Stomach cancer DISKIJSX Strong Altered Expression [26]
Testicular cancer DIS6HNYO Strong Genetic Variation [27]
Testicular germ cell tumor DIS5RN24 Strong Genetic Variation [28]
Endometrial cancer DISW0LMR moderate Biomarker [29]
Lung adenocarcinoma DISD51WR moderate Biomarker [30]
Prostate cancer DISF190Y Disputed Biomarker [31]
Prostate carcinoma DISMJPLE Disputed Biomarker [31]
Ankylosing spondylitis DISRC6IR Limited Genetic Variation [32]
Crohn disease DIS2C5Q8 Limited Genetic Variation [32]
Gastric cancer DISXGOUK Limited Altered Expression [26]
Melanoma DIS1RRCY Limited Biomarker [33]
Neoplasm of testis DISK4XHT Limited Posttranslational Modification [34]
Obesity DIS47Y1K Limited Biomarker [35]
Pancreatic cancer DISJC981 Limited Genetic Variation [36]
Psoriasis DIS59VMN Limited Genetic Variation [32]
Sclerosing cholangitis DIS7GZNB Limited Genetic Variation [32]
Ulcerative colitis DIS8K27O Limited Genetic Variation [32]
Familial ovarian cancer DISGLR2C No Known Autosomal dominant [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
GDC-0980/RG7422 DMF3MV1 Phase 2 Serine/threonine-protein kinase STK11 (STK11) increases the response to substance of GDC-0980/RG7422. [53]
(+)-JQ1 DM1CZSJ Phase 1 Serine/threonine-protein kinase STK11 (STK11) increases the response to substance of (+)-JQ1. [54]
STO609 DMZSOG2 Investigative Serine/threonine-protein kinase STK11 (STK11) affects the response to substance of STO609. [43]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Serine/threonine-protein kinase STK11 (STK11). [37]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Serine/threonine-protein kinase STK11 (STK11). [38]
Sertraline DM0FB1J Approved Sertraline increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [41]
2-deoxyglucose DMIAHVU Approved 2-deoxyglucose decreases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [42]
Ergotidine DM78IME Approved Ergotidine increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [43]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the acetylation of Serine/threonine-protein kinase STK11 (STK11). [44]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Serine/threonine-protein kinase STK11 (STK11). [46]
TAK-114 DMTXE19 Phase 1 TAK-114 decreases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [47]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [48]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [49]
OXYRESVERATROL DMN7S4L Investigative OXYRESVERATROL increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [50]
Ginsenoside Re DM46FVD Investigative Ginsenoside Re increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [51]
Beta-ionone DM6QV8A Investigative Beta-ionone increases the phosphorylation of Serine/threonine-protein kinase STK11 (STK11). [52]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
3 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Selenium DM25CGV Approved Selenium increases the expression of Serine/threonine-protein kinase STK11 (STK11). [39]
Pioglitazone DMKJ485 Approved Pioglitazone increases the expression of Serine/threonine-protein kinase STK11 (STK11). [40]
APR-246 DMNFADH Phase 2 APR-246 increases the expression of Serine/threonine-protein kinase STK11 (STK11). [45]
------------------------------------------------------------------------------------

References

1 A novel STK11 germline mutation in two siblings with Peutz-Jeghers syndrome complicated by primary gastric cancer. Clin Genet. 2005 Jan;67(1):81-6. doi: 10.1111/j.1399-0004.2005.00380.x.
2 Prenatal diagnosis in a hereditary Peutz-Jeghers syndrome family with high cancer risk.BMC Med Genet. 2018 May 2;19(1):66. doi: 10.1186/s12881-018-0594-9.
3 Thyroid hormone effects on LKB1, MO25, phospho-AMPK, phospho-CREB, and PGC-1alpha in rat muscle.J Appl Physiol (1985). 2008 Oct;105(4):1218-27. doi: 10.1152/japplphysiol.00997.2007. Epub 2008 Jul 31.
4 Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis.Genes Dev. 2019 Feb 1;33(3-4):150-165. doi: 10.1101/gad.320481.118. Epub 2019 Jan 28.
5 Nasal polyposis in Peutz-Jeghers syndrome: a distinct histopathological and molecular genetic entity.J Clin Pathol. 2007 Apr;60(4):392-6. doi: 10.1136/jcp.2005.036418. Epub 2006 Jun 14.
6 STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas.Am J Pathol. 2001 Dec;159(6):2017-22. doi: 10.1016/S0002-9440(10)63053-2.
7 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
8 Thymoquinone inhibits metastatic phenotype and epithelialmesenchymal transition in renal cell carcinoma by regulating the LKB1/AMPK signaling pathway.Oncol Rep. 2018 Sep;40(3):1443-1450. doi: 10.3892/or.2018.6519. Epub 2018 Jun 25.
9 Expression and transcriptional profiling of the LKB1 tumor suppressor in cervical cancer cells.Gynecol Oncol. 2014 Aug;134(2):372-8. doi: 10.1016/j.ygyno.2014.04.050. Epub 2014 May 2.
10 Sodium butyrate induces autophagy in colorectal cancer cells through LKB1/AMPK signaling.J Physiol Biochem. 2019 Feb;75(1):53-63. doi: 10.1007/s13105-018-0651-z. Epub 2018 Oct 25.
11 Prognostic significance of LKB1 promoter methylation in cutaneous malignant melanoma.Oncol Lett. 2017 Aug;14(2):2075-2080. doi: 10.3892/ol.2017.6431. Epub 2017 Jun 20.
12 LKB1 as a Tumor Suppressor in Uterine Cancer: Mouse Models and Translational Studies.Adv Exp Med Biol. 2017;943:211-241. doi: 10.1007/978-3-319-43139-0_7.
13 AMPK-Independent LKB1 Activity Is Required for Efficient Epithelial Ovarian Cancer Metastasis.Mol Cancer Res. 2020 Mar;18(3):488-500. doi: 10.1158/1541-7786.MCR-19-0530. Epub 2019 Nov 19.
14 A 23-Nucleotide Deletion in STK11 Gene Causes Peutz-Jeghers Syndrome and Malignancy in a Chinese Patient Without a Positive Family History.Dig Dis Sci. 2017 Nov;62(11):3014-3020. doi: 10.1007/s10620-017-4741-5. Epub 2017 Oct 6.
15 CXCL17 promotes cell metastasis and inhibits autophagy via the LKB1-AMPK pathway in hepatocellular carcinoma.Gene. 2019 Mar 30;690:129-136. doi: 10.1016/j.gene.2018.12.043. Epub 2018 Dec 28.
16 Quercetin-Induced AMP-Activated Protein Kinase Activation Attenuates Vasoconstriction Through LKB1-AMPK Signaling Pathway.J Med Food. 2018 Feb;21(2):146-153. doi: 10.1089/jmf.2017.4052. Epub 2017 Oct 16.
17 Circular RNA circHIPK3 modulates autophagy via MIR124-3p-STAT3-PRKAA/AMPK signaling in STK11 mutant lung cancer.Autophagy. 2020 Apr;16(4):659-671. doi: 10.1080/15548627.2019.1634945. Epub 2019 Jun 28.
18 Association between LKB1 expression and prognosis of patients with solid tumours: an updated systematic review and meta-analysis.BMJ Open. 2019 Aug 5;9(8):e027185. doi: 10.1136/bmjopen-2018-027185.
19 LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma.Cancer Cell. 2012 Jun 12;21(6):751-64. doi: 10.1016/j.ccr.2012.03.048.
20 LKB1 inactivation occurs in a subset of esophageal adenocarcinomas and is sufficient to drive tumor cell proliferation.J Thorac Cardiovasc Surg. 2018 Apr;155(4):1891-1899. doi: 10.1016/j.jtcvs.2017.11.067. Epub 2017 Dec 23.
21 Synergistic effects of eukaryotic co-expression plasmid-based STAT3-specific siRNA and LKB1 on ovarian cancer in vitro and in vivo.Oncol Rep. 2015 Feb;33(2):774-82. doi: 10.3892/or.2014.3623. Epub 2014 Nov 25.
22 Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer.Nat Genet. 2015 Aug;47(8):911-6. doi: 10.1038/ng.3341. Epub 2015 Jun 22.
23 A Phase IIa Trial of Metformin for Colorectal Cancer Risk Reduction among Individuals with History of Colorectal Adenomas and Elevated Body Mass Index.Cancer Prev Res (Phila). 2020 Feb;13(2):203-212. doi: 10.1158/1940-6207.CAPR-18-0262. Epub 2019 Dec 9.
24 Molecular cloning, polymorphism, and expression analysis of the LKB1/STK11 gene and its association with non-specific digestive disorder in rabbits.Mol Cell Biochem. 2018 Dec;449(1-2):127-136. doi: 10.1007/s11010-018-3349-1. Epub 2018 Apr 10.
25 The Landscape of Actionable Molecular Alterations in Immunomarker-Defined Large-Cell Carcinoma of the Lung.J Thorac Oncol. 2019 Jul;14(7):1213-1222. doi: 10.1016/j.jtho.2019.03.021. Epub 2019 Apr 9.
26 Impact of liver kinase B1 on p53 and survivin and its correlation with prognosis in gastric cancer.Onco Targets Ther. 2019 Feb 22;12:1439-1445. doi: 10.2147/OTT.S199138. eCollection 2019.
27 Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors.Cancer Res. 1998 May 15;58(10):2087-90.
28 Mutations and impaired function of LKB1 in familial and non-familial Peutz-Jeghers syndrome and a sporadic testicular cancer.Hum Mol Genet. 1999 Jan;8(1):45-51. doi: 10.1093/hmg/8.1.45.
29 LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment.J Clin Invest. 2015 Nov 2;125(11):4063-76. doi: 10.1172/JCI82152. Epub 2015 Sep 28.
30 LKB1 and Tumor Metabolism: The Interplay of Immune and Angiogenic Microenvironment in Lung Cancer.Int J Mol Sci. 2019 Apr 16;20(8):1874. doi: 10.3390/ijms20081874.
31 Oncogenic miR-744 promotes prostate cancer growth through direct targeting of LKB1.Oncol Lett. 2019 Feb;17(2):2257-2265. doi: 10.3892/ol.2018.9822. Epub 2018 Dec 11.
32 Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci.Nat Genet. 2016 May;48(5):510-8. doi: 10.1038/ng.3528. Epub 2016 Mar 14.
33 Liver kinase B1/adenosine monophosphate-activated protein kinase signaling axis induces p21/WAF1 expression in a p53-dependent manner.Oncol Lett. 2018 Jul;16(1):1291-1297. doi: 10.3892/ol.2018.8741. Epub 2018 May 18.
34 Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome.Oncogene. 2000 Jan 6;19(1):164-8. doi: 10.1038/sj.onc.1203227.
35 Liver kinase B1 induces browning phenotype in 3T3-L1 adipocytes.Gene. 2019 Jan 15;682:33-41. doi: 10.1016/j.gene.2018.10.012. Epub 2018 Oct 6.
36 Genetic variants in the liver kinase B1-AMP-activated protein kinase pathway genes and pancreatic cancer risk.Mol Carcinog. 2019 Aug;58(8):1338-1348. doi: 10.1002/mc.23018. Epub 2019 Apr 17.
37 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
38 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
39 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
40 Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22547. doi: 10.1002/jbt.22547. Epub 2020 Jun 26.
41 Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy. 2021 Oct;17(10):2783-2799. doi: 10.1080/15548627.2020.1841953. Epub 2020 Nov 9.
42 2-Deoxy-D-glucose cooperates with arsenic trioxide to induce apoptosis in leukemia cells: involvement of IGF-1R-regulated Akt/mTOR, MEK/ERK and LKB-1/AMPK signaling pathways. Biochem Pharmacol. 2012 Dec 15;84(12):1604-16. doi: 10.1016/j.bcp.2012.09.022. Epub 2012 Oct 5.
43 eNOS activation mediated by AMPK after stimulation of endothelial cells with histamine or thrombin is dependent on LKB1. Biochim Biophys Acta. 2011 Feb;1813(2):322-31. doi: 10.1016/j.bbamcr.2010.12.001. Epub 2010 Dec 9.
44 Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med. 2015 May;21(5):498-505. doi: 10.1038/nm.3821. Epub 2015 Apr 6.
45 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
46 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
47 Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol Oncol. 2016 Jun;10(6):806-24. doi: 10.1016/j.molonc.2016.01.008. Epub 2016 Feb 4.
48 Folic acid supplementation during high-fat diet feeding restores AMPK activation via an AMP-LKB1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2015 Nov 15;309(10):R1215-25. doi: 10.1152/ajpregu.00260.2015. Epub 2015 Sep 23.
49 ERK5/HDAC5-mediated, resveratrol-, and pterostilbene-induced expression of MnSOD in human endothelial cells. Mol Nutr Food Res. 2016 Feb;60(2):266-77. doi: 10.1002/mnfr.201500466. Epub 2015 Oct 23.
50 Oxyresveratrol ameliorates nonalcoholic fatty liver disease by regulating hepatic lipogenesis and fatty acid oxidation through liver kinase B1 and AMP-activated protein kinase. Chem Biol Interact. 2018 Jun 1;289:68-74. doi: 10.1016/j.cbi.2018.04.023. Epub 2018 Apr 24.
51 Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med. 2012 Jan;29(1):73-80. doi: 10.3892/ijmm.2011.805. Epub 2011 Oct 3.
52 -Ionone represses renal cell carcinoma progression through activating LKB1/AMPK-triggered autophagy. J Biochem Mol Toxicol. 2023 Jun;37(6):e23331. doi: 10.1002/jbt.23331. Epub 2023 Feb 26.
53 Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012 Dec 15;18(24):6771-83. doi: 10.1158/1078-0432.CCR-12-2347. Epub 2012 Nov 7.
54 Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin Cancer Res. 2013 Nov 15;19(22):6183-92. doi: 10.1158/1078-0432.CCR-12-3904. Epub 2013 Sep 17.
55 eNOS activation mediated by AMPK after stimulation of endothelial cells with histamine or thrombin is dependent on LKB1. Biochim Biophys Acta. 2011 Feb;1813(2):322-31. doi: 10.1016/j.bbamcr.2010.12.001. Epub 2010 Dec 9.