General Information of Drug Off-Target (DOT) (ID: OT8FL49L)

DOT Name G0/G1 switch protein 2 (G0S2)
Synonyms G0/G1 switch regulatory protein 2; Putative lymphocyte G0/G1 switch gene
Gene Name G0S2
Related Disease
Carcinoma ( )
Invasive breast carcinoma ( )
Metabolic disorder ( )
Neoplasm ( )
Advanced cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Estrogen-receptor positive breast cancer ( )
Fatty liver disease ( )
Glioblastoma multiforme ( )
Lung cancer ( )
Lung carcinoma ( )
Non-small-cell lung cancer ( )
Obesity ( )
Rheumatoid arthritis ( )
Liposarcoma ( )
Precancerous condition ( )
Undifferentiated carcinoma ( )
Cutaneous squamous cell carcinoma ( )
Glioma ( )
Non-insulin dependent diabetes ( )
Promyelocytic leukaemia ( )
UniProt ID
G0S2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF15103
Sequence
METVQELIPLAKEMMAQKRKGKMVKLYVLGSVLALFGVVLGLMETVCSPFTAARRLRDQE
AAVAELQAALERQALQKQALQEKGKQQDTVLGGRALSNRQHAS
Function Promotes apoptosis by binding to BCL2, hence preventing the formation of protective BCL2-BAX heterodimers.
Tissue Specificity Widely expressed with highest levels in peripheral blood, skeletal muscle and heart, followed by kidney and liver.
Reactome Pathway
PPARA activates gene expression (R-HSA-1989781 )

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Definitive Biomarker [1]
Invasive breast carcinoma DISANYTW Definitive Biomarker [2]
Metabolic disorder DIS71G5H Definitive Biomarker [3]
Neoplasm DISZKGEW Definitive Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Biomarker [4]
Breast carcinoma DIS2UE88 Strong Biomarker [4]
Estrogen-receptor positive breast cancer DIS1H502 Strong Altered Expression [4]
Fatty liver disease DIS485QZ Strong Biomarker [6]
Glioblastoma multiforme DISK8246 Strong Altered Expression [7]
Lung cancer DISCM4YA Strong Biomarker [8]
Lung carcinoma DISTR26C Strong Biomarker [8]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [5]
Obesity DIS47Y1K Strong Altered Expression [9]
Rheumatoid arthritis DISTSB4J Strong Biomarker [10]
Liposarcoma DIS8IZVM moderate Altered Expression [11]
Precancerous condition DISV06FL moderate Biomarker [11]
Undifferentiated carcinoma DISIAZST Disputed Biomarker [1]
Cutaneous squamous cell carcinoma DIS3LXUG Limited Altered Expression [12]
Glioma DIS5RPEH Limited Altered Expression [7]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [13]
Promyelocytic leukaemia DISYGG13 Limited Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved G0/G1 switch protein 2 (G0S2) affects the response to substance of Doxorubicin. [47]
Mitomycin DMH0ZJE Approved G0/G1 switch protein 2 (G0S2) affects the response to substance of Mitomycin. [47]
Vinblastine DM5TVS3 Approved G0/G1 switch protein 2 (G0S2) affects the response to substance of Vinblastine. [47]
------------------------------------------------------------------------------------
35 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of G0/G1 switch protein 2 (G0S2). [14]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of G0/G1 switch protein 2 (G0S2). [15]
Tretinoin DM49DUI Approved Tretinoin increases the expression of G0/G1 switch protein 2 (G0S2). [16]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of G0/G1 switch protein 2 (G0S2). [17]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of G0/G1 switch protein 2 (G0S2). [15]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of G0/G1 switch protein 2 (G0S2). [18]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of G0/G1 switch protein 2 (G0S2). [19]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of G0/G1 switch protein 2 (G0S2). [20]
Triclosan DMZUR4N Approved Triclosan decreases the expression of G0/G1 switch protein 2 (G0S2). [21]
Selenium DM25CGV Approved Selenium increases the expression of G0/G1 switch protein 2 (G0S2). [22]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of G0/G1 switch protein 2 (G0S2). [23]
Progesterone DMUY35B Approved Progesterone increases the expression of G0/G1 switch protein 2 (G0S2). [24]
Menadione DMSJDTY Approved Menadione affects the expression of G0/G1 switch protein 2 (G0S2). [19]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of G0/G1 switch protein 2 (G0S2). [25]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of G0/G1 switch protein 2 (G0S2). [26]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of G0/G1 switch protein 2 (G0S2). [27]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of G0/G1 switch protein 2 (G0S2). [28]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of G0/G1 switch protein 2 (G0S2). [29]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of G0/G1 switch protein 2 (G0S2). [27]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of G0/G1 switch protein 2 (G0S2). [30]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of G0/G1 switch protein 2 (G0S2). [31]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of G0/G1 switch protein 2 (G0S2). [32]
Bosentan DMIOGBU Approved Bosentan affects the expression of G0/G1 switch protein 2 (G0S2). [33]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of G0/G1 switch protein 2 (G0S2). [34]
Seocalcitol DMKL9QO Phase 3 Seocalcitol increases the expression of G0/G1 switch protein 2 (G0S2). [35]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of G0/G1 switch protein 2 (G0S2). [36]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of G0/G1 switch protein 2 (G0S2). [37]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of G0/G1 switch protein 2 (G0S2). [39]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of G0/G1 switch protein 2 (G0S2). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of G0/G1 switch protein 2 (G0S2). [41]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of G0/G1 switch protein 2 (G0S2). [42]
Milchsaure DM462BT Investigative Milchsaure increases the expression of G0/G1 switch protein 2 (G0S2). [43]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of G0/G1 switch protein 2 (G0S2). [44]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of G0/G1 switch protein 2 (G0S2). [45]
Paraquat DMR8O3X Investigative Paraquat affects the expression of G0/G1 switch protein 2 (G0S2). [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of G0/G1 switch protein 2 (G0S2). [38]
------------------------------------------------------------------------------------

References

1 Global gene expression profiling of chemically induced rat mammary gland carcinomas and adenomas.Toxicol Pathol. 2005;33(7):768-75. doi: 10.1080/01926230500437027.
2 G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells.Biomol Ther (Seoul). 2019 Nov 1;27(6):591-602. doi: 10.4062/biomolther.2019.063.
3 The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.PLoS One. 2013 Aug 12;8(8):e72315. doi: 10.1371/journal.pone.0072315. eCollection 2013.
4 G0S2 represses PI3K/mTOR signaling and increases sensitivity to PI3K/mTOR pathway inhibitors in breast cancer.Cell Cycle. 2017;16(21):2146-2155. doi: 10.1080/15384101.2017.1371884. Epub 2017 Sep 14.
5 Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells.Oncotarget. 2015 Sep 29;6(29):28282-95. doi: 10.18632/oncotarget.5061.
6 Activation of G0/G1 switch gene 2 by endoplasmic reticulum stress enhances hepatic steatosis.Metabolism. 2019 Oct;99:32-44. doi: 10.1016/j.metabol.2019.06.015. Epub 2019 Jul 2.
7 Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response.J Exp Clin Cancer Res. 2019 Apr 5;38(1):147. doi: 10.1186/s13046-019-1151-x.
8 Identification of G0S2 as a gene frequently methylated in squamous lung cancer by combination of in silico and experimental approaches.Int J Cancer. 2010 Apr 15;126(8):1895-1902. doi: 10.1002/ijc.24947.
9 Regulation of G0/G1 switch gene 2 (G0S2) expression in human adipose tissue.Arch Physiol Biochem. 2016;122(2):47-53. doi: 10.3109/13813455.2015.1122066. Epub 2016 Jan 27.
10 Gene expression profile predicting the response to anti-TNF treatment in patients with rheumatoid arthritis; analysis of GEO datasets.Joint Bone Spine. 2014 Jul;81(4):325-30. doi: 10.1016/j.jbspin.2014.01.013. Epub 2014 Feb 20.
11 Epistatic interaction between the lipase-encoding genes Pnpla2 and Lipe causes liposarcoma in mice.PLoS Genet. 2017 May 1;13(5):e1006716. doi: 10.1371/journal.pgen.1006716. eCollection 2017 May.
12 Silencing of G0/G1 switch gene 2 in cutaneous squamous cell carcinoma.PLoS One. 2017 Oct 26;12(10):e0187047. doi: 10.1371/journal.pone.0187047. eCollection 2017.
13 Reduced mRNA and protein expression of perilipin A and G0/G1 switch gene 2 (G0S2) in human adipose tissue in poorly controlled type 2 diabetes.J Clin Endocrinol Metab. 2012 Jul;97(7):E1348-52. doi: 10.1210/jc.2012-1159. Epub 2012 Apr 24.
14 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
15 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
16 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
17 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
18 A comprehensive analysis of Wnt/beta-catenin signaling pathway-related genes and crosstalk pathways in the treatment of As2O3 in renal cancer. Ren Fail. 2018 Nov;40(1):331-339.
19 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
20 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
21 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
22 Changes in gene expression profiles in response to selenium supplementation among individuals with arsenic-induced pre-malignant skin lesions. Toxicol Lett. 2007 Mar 8;169(2):162-76. doi: 10.1016/j.toxlet.2007.01.006. Epub 2007 Jan 19.
23 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
24 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
25 Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer. 2004 Nov 1;112(2):200-12. doi: 10.1002/ijc.20401.
26 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
27 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
28 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
29 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
30 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
31 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
32 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
33 Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures. Arch Toxicol. 2018 Jun;92(6):1939-1952.
34 Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1. J Surg Res. 2007 Apr;138(2):163-9. doi: 10.1016/j.jss.2006.05.037. Epub 2007 Jan 25.
35 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
36 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
37 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
38 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
39 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
40 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
41 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
42 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
43 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
44 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
45 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
46 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
47 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.