General Information of Drug Off-Target (DOT) (ID: OTFG5CVF)

DOT Name E3 SUMO-protein ligase RanBP2 (RANBP2)
Synonyms EC 2.3.2.-; 358 kDa nucleoporin; Nuclear pore complex protein Nup358; Nucleoporin Nup358; Ran-binding protein 2; RanBP2; p270
Gene Name RANBP2
Related Disease
Malaria ( )
Paralysis ( )
Acute myelomonocytic leukemia M4 ( )
Adult glioblastoma ( )
Advanced cancer ( )
Autoimmune disease ( )
Carcinoma ( )
Cholangiocarcinoma ( )
Chromosomal disorder ( )
Classic Hodgkin lymphoma ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal carcinoma ( )
Familial acute necrotizing encephalopathy ( )
Glioblastoma multiforme ( )
Glioma ( )
Hematologic disease ( )
Huntington disease ( )
Hypopigmentation of the skin ( )
Insulinoma ( )
Malignant glioma ( )
Meningioma ( )
Microphthalmia ( )
Myelodysplastic syndrome ( )
Neoplasm ( )
Ocular cancer ( )
Plasma cell myeloma ( )
Sciatica/lumbar radicular pain ( )
Trichorhinophalangeal syndrome type II ( )
Vibrio cholerae infection ( )
Vitiligo ( )
Amyotrophic lateral sclerosis ( )
Encephalitis ( )
Frontotemporal dementia ( )
Pick disease ( )
Dowling-Degos disease ( )
Follicular lymphoma ( )
Leigh syndrome ( )
Malignant soft tissue neoplasm ( )
Nervous system disease ( )
Sarcoma ( )
UniProt ID
RBP2_HUMAN
PDB ID
1RRP; 1XKE; 1Z5S; 2LAS; 3UIN; 3UIO; 3UIP; 4GA0; 4I9Y; 4L6E; 4LQW; 5CLL; 5CLQ; 7MNJ; 7MNK; 7MNL; 7MNM; 7MNN; 7MNO; 7MNP; 7MNQ; 7MNR; 7MNS; 7MNT; 7MNU; 7MNV; 7MNW; 7MNX; 7MNY; 7MNZ; 7R5J; 7R5K
EC Number
2.3.2.-
Pfam ID
PF12185 ; PF00160 ; PF00638 ; PF00641
Sequence
MRRSKADVERYIASVQGSTPSPRQKSMKGFYFAKLYYEAKEYDLAKKYICTYINVQERDP
KAHRFLGLLYELEENTDKAVECYRRSVELNPTQKDLVLKIAELLCKNDVTDGRAKYWLER
AAKLFPGSPAIYKLKEQLLDCEGEDGWNKLFDLIQSELYVRPDDVHVNIRLVEVYRSTKR
LKDAVAHCHEAERNIALRSSLEWNSCVVQTLKEYLESLQCLESDKSDWRATNTDLLLAYA
NLMLLTLSTRDVQESRELLQSFDSALQSVKSLGGNDELSATFLEMKGHFYMHAGSLLLKM
GQHSSNVQWRALSELAALCYLIAFQVPRPKIKLIKGEAGQNLLEMMACDRLSQSGHMLLN
LSRGKQDFLKEIVETFANKSGQSALYDALFSSQSPKDTSFLGSDDIGNIDVREPELEDLT
RYDVGAIRAHNGSLQHLTWLGLQWNSLPALPGIRKWLKQLFHHLPHETSRLETNAPESIC
ILDLEVFLLGVVYTSHLQLKEKCNSHHSSYQPLCLPLPVCKQLCTERQKSWWDAVCTLIH
RKAVPGNVAKLRLLVQHEINTLRAQEKHGLQPALLVHWAECLQKTGSGLNSFYDQREYIG
RSVHYWKKVLPLLKIIKKKNSIPEPIDPLFKHFHSVDIQASEIVEYEEDAHITFAILDAV
NGNIEDAVTAFESIKSVVSYWNLALIFHRKAEDIENDALSPEEQEECKNYLRKTRDYLIK
IIDDSDSNLSVVKKLPVPLESVKEMLNSVMQELEDYSEGGPLYKNGSLRNADSEIKHSTP
SPTRYSLSPSKSYKYSPKTPPRWAEDQNSLLKMICQQVEAIKKEMQELKLNSSNSASPHR
WPTENYGPDSVPDGYQGSQTFHGAPLTVATTGPSVYYSQSPAYNSQYLLRPAANVTPTKG
PVYGMNRLPPQQHIYAYPQQMHTPPVQSSSACMFSQEMYGPPALRFESPATGILSPRGDD
YFNYNVQQTSTNPPLPEPGYFTKPPIAAHASRSAESKTIEFGKTNFVQPMPGEGLRPSLP
TQAHTTQPTPFKFNSNFKSNDGDFTFSSPQVVTQPPPAAYSNSESLLGLLTSDKPLQGDG
YSGAKPIPGGQTIGPRNTFNFGSKNVSGISFTENMGSSQQKNSGFRRSDDMFTFHGPGKS
VFGTPTLETANKNHETDGGSAHGDDDDDGPHFEPVVPLPDKIEVKTGEEDEEEFFCNRAK
LFRFDVESKEWKERGIGNVKILRHKTSGKIRLLMRREQVLKICANHYISPDMKLTPNAGS
DRSFVWHALDYADELPKPEQLAIRFKTPEEAALFKCKFEEAQSILKAPGTNVAMASNQAV
RIVKEPTSHDNKDICKSDAGNLNFEFQVAKKEGSWWHCNSCSLKNASTAKKCVSCQNLNP
SNKELVGPPLAETVFTPKTSPENVQDRFALVTPKKEGHWDCSICLVRNEPTVSRCIACQN
TKSANKSGSSFVHQASFKFGQGDLPKPINSDFRSVFSTKEGQWDCSACLVQNEGSSTKCA
ACQNPRKQSLPATSIPTPASFKFGTSETSKTLKSGFEDMFAKKEGQWDCSSCLVRNEANA
TRCVACQNPDKPSPSTSVPAPASFKFGTSETSKAPKSGFEGMFTKKEGQWDCSVCLVRNE
ASATKCIACQNPGKQNQTTSAVSTPASSETSKAPKSGFEGMFTKKEGQWDCSVCLVRNEA
SATKCIACQNPGKQNQTTSAVSTPASSETSKAPKSGFEGMFTKKEGQWDCSVCLVRNEAS
ATKCIACQCPSKQNQTTAISTPASSEISKAPKSGFEGMFIRKGQWDCSVCCVQNESSSLK
CVACDASKPTHKPIAEAPSAFTLGSEMKLHDSSGSQVGTGFKSNFSEKASKFGNTEQGFK
FGHVDQENSPSFMFQGSSNTEFKSTKEGFSIPVSADGFKFGISEPGNQEKKSEKPLENGT
GFQAQDISGQKNGRGVIFGQTSSTFTFADLAKSTSGEGFQFGKKDPNFKGFSGAGEKLFS
SQYGKMANKANTSGDFEKDDDAYKTEDSDDIHFEPVVQMPEKVELVTGEEDEKVLYSQRV
KLFRFDAEVSQWKERGLGNLKILKNEVNGKLRMLMRREQVLKVCANHWITTTMNLKPLSG
SDRAWMWLASDFSDGDAKLEQLAAKFKTPELAEEFKQKFEECQRLLLDIPLQTPHKLVDT
GRAAKLIQRAEEMKSGLKDFKTFLTNDQTKVTEEENKGSGTGAAGASDTTIKPNPENTGP
TLEWDNYDLREDALDDSVSSSSVHASPLASSPVRKNLFRFGESTTGFNFSFKSALSPSKS
PAKLNQSGTSVGTDEESDVTQEEERDGQYFEPVVPLPDLVEVSSGEENEQVVFSHRAKLY
RYDKDVGQWKERGIGDIKILQNYDNKQVRIVMRRDQVLKLCANHRITPDMTLQNMKGTER
VWLWTACDFADGERKVEHLAVRFKLQDVADSFKKIFDEAKTAQEKDSLITPHVSRSSTPR
ESPCGKIAVAVLEETTRERTDVIQGDDVADATSEVEVSSTSETTPKAVVSPPKFVFGSES
VKSIFSSEKSKPFAFGNSSATGSLFGFSFNAPLKSNNSETSSVAQSGSESKVEPKKCELS
KNSDIEQSSDSKVKNLFASFPTEESSINYTFKTPEKAKEKKKPEDSPSDDDVLIVYELTP
TAEQKALATKLKLPPTFFCYKNRPDYVSEEEEDDEDFETAVKKLNGKLYLDGSEKCRPLE
ENTADNEKECIIVWEKKPTVEEKAKADTLKLPPTFFCGVCSDTDEDNGNGEDFQSELQKV
QEAQKSQTEEITSTTDSVYTGGTEVMVPSFCKSEEPDSITKSISSPSVSSETMDKPVDLS
TRKEIDTDSTSQGESKIVSFGFGSSTGLSFADLASSNSGDFAFGSKDKNFQWANTGAAVF
GTQSVGTQSAGKVGEDEDGSDEEVVHNEDIHFEPIVSLPEVEVKSGEEDEEILFKERAKL
YRWDRDVSQWKERGVGDIKILWHTMKNYYRILMRRDQVFKVCANHVITKTMELKPLNVSN
NALVWTASDYADGEAKVEQLAVRFKTKEVADCFKKTFEECQQNLMKLQKGHVSLAAELSK
ETNPVVFFDVCADGEPLGRITMELFSNIVPRTAENFRALCTGEKGFGFKNSIFHRVIPDF
VCQGGDITKHDGTGGQSIYGDKFEDENFDVKHTGPGLLSMANQGQNTNNSQFVITLKKAE
HLDFKHVVFGFVKDGMDTVKKIESFGSPKGSVCRRITITECGQI
Function
E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I. Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates. Binds single-stranded RNA (in vitro). May bind DNA. Component of the nuclear export pathway. Specific docking site for the nuclear export factor exportin-1. Inhibits EIF4E-dependent mRNA export. Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB. Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle. Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
Viral life cycle - HIV-1 (hsa03250 )
Amyotrophic lateral sclerosis (hsa05014 )
Reactome Pathway
Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal (R-HSA-141444 )
Transport of the SLBP independent Mature mRNA (R-HSA-159227 )
Transport of the SLBP Dependant Mature mRNA (R-HSA-159230 )
Transport of Mature mRNA Derived from an Intronless Transcript (R-HSA-159231 )
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )
Rev-mediated nuclear export of HIV RNA (R-HSA-165054 )
Transport of Ribonucleoproteins into the Host Nucleus (R-HSA-168271 )
NS1 Mediated Effects on Host Pathways (R-HSA-168276 )
Viral Messenger RNA Synthesis (R-HSA-168325 )
NEP/NS2 Interacts with the Cellular Export Machinery (R-HSA-168333 )
Regulation of Glucokinase by Glucokinase Regulatory Protein (R-HSA-170822 )
Nuclear import of Rev protein (R-HSA-180746 )
Vpr-mediated nuclear import of PICs (R-HSA-180910 )
snRNP Assembly (R-HSA-191859 )
Separation of Sister Chromatids (R-HSA-2467813 )
Resolution of Sister Chromatid Cohesion (R-HSA-2500257 )
SUMOylation of DNA damage response and repair proteins (R-HSA-3108214 )
SUMOylation of ubiquitinylation proteins (R-HSA-3232142 )
Nuclear Pore Complex (NPC) Disassembly (R-HSA-3301854 )
Regulation of HSF1-mediated heat shock response (R-HSA-3371453 )
SUMOylation of SUMOylation proteins (R-HSA-4085377 )
SUMOylation of chromatin organization proteins (R-HSA-4551638 )
SUMOylation of RNA binding proteins (R-HSA-4570464 )
SUMOylation of DNA replication proteins (R-HSA-4615885 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC) (R-HSA-5619107 )
RHO GTPases Activate Formins (R-HSA-5663220 )
tRNA processing in the nucleus (R-HSA-6784531 )
Mitotic Prometaphase (R-HSA-68877 )
HCMV Early Events (R-HSA-9609690 )
HCMV Late Events (R-HSA-9610379 )
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
Signaling by ALK fusions and activated point mutants (R-HSA-9725370 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

41 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Malaria DISQ9Y50 Definitive Biomarker [1]
Paralysis DISF9I3O Definitive Genetic Variation [2]
Acute myelomonocytic leukemia M4 DISRRMV2 Strong Biomarker [3]
Adult glioblastoma DISVP4LU Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Altered Expression [5]
Autoimmune disease DISORMTM Strong Biomarker [6]
Carcinoma DISH9F1N Strong Biomarker [7]
Cholangiocarcinoma DIS71F6X Strong Biomarker [8]
Chromosomal disorder DISM5BB5 Strong Biomarker [9]
Classic Hodgkin lymphoma DISV1LU6 Strong Biomarker [10]
Colon cancer DISVC52G Strong Altered Expression [11]
Colon carcinoma DISJYKUO Strong Altered Expression [11]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [12]
Familial acute necrotizing encephalopathy DISPCVGG Strong Autosomal dominant [13]
Glioblastoma multiforme DISK8246 Strong Biomarker [4]
Glioma DIS5RPEH Strong Altered Expression [14]
Hematologic disease DIS9XD9A Strong Biomarker [3]
Huntington disease DISQPLA4 Strong Biomarker [10]
Hypopigmentation of the skin DIS39YKC Strong Biomarker [15]
Insulinoma DISIU1JS Strong Altered Expression [16]
Malignant glioma DISFXKOV Strong Biomarker [17]
Meningioma DISPT4TG Strong Altered Expression [14]
Microphthalmia DISGEBES Strong Altered Expression [18]
Myelodysplastic syndrome DISYHNUI Strong Biomarker [19]
Neoplasm DISZKGEW Strong Biomarker [20]
Ocular cancer DISV2EVE Strong Biomarker [21]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [22]
Sciatica/lumbar radicular pain DIS01KTQ Strong Genetic Variation [23]
Trichorhinophalangeal syndrome type II DISW4YZ1 Strong Biomarker [24]
Vibrio cholerae infection DISW7E3U Strong Altered Expression [25]
Vitiligo DISR05SL Strong Biomarker [26]
Amyotrophic lateral sclerosis DISF7HVM moderate Biomarker [27]
Encephalitis DISLD1RL moderate Genetic Variation [28]
Frontotemporal dementia DISKYHXL moderate Genetic Variation [29]
Pick disease DISP6X50 moderate Genetic Variation [29]
Dowling-Degos disease DISGTTEP Limited Biomarker [30]
Follicular lymphoma DISVEUR6 Limited Genetic Variation [31]
Leigh syndrome DISWQU45 Limited Autosomal dominant [32]
Malignant soft tissue neoplasm DISTC6NO Limited Genetic Variation [33]
Nervous system disease DISJ7GGT Limited Biomarker [34]
Sarcoma DISZDG3U Limited Genetic Variation [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved E3 SUMO-protein ligase RanBP2 (RANBP2) increases the response to substance of Arsenic. [47]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of E3 SUMO-protein ligase RanBP2 (RANBP2). [35]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of E3 SUMO-protein ligase RanBP2 (RANBP2). [45]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of E3 SUMO-protein ligase RanBP2 (RANBP2). [46]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of E3 SUMO-protein ligase RanBP2 (RANBP2). [46]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [36]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [37]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [38]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [39]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [40]
Testosterone DM7HUNW Approved Testosterone decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [41]
Selenium DM25CGV Approved Selenium decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [42]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [43]
Azacitidine DMTA5OE Approved Azacitidine increases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [44]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of E3 SUMO-protein ligase RanBP2 (RANBP2). [42]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Motility precedes egress of malaria parasites from oocysts.Elife. 2017 Jan 24;6:e19157. doi: 10.7554/eLife.19157.
2 Acute necrotizing encephalopathy (ANE1): rare autosomal-dominant disorder presenting as acute transverse myelitis.J Neurol. 2013 Jun;260(6):1545-53. doi: 10.1007/s00415-012-6825-7. Epub 2013 Jan 18.
3 RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.Cancer Genet. 2014 Jan-Feb;207(1-2):40-5. doi: 10.1016/j.cancergen.2013.12.003. Epub 2014 Jan 21.
4 Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy.J Neurooncol. 2007 Jan;81(2):139-48. doi: 10.1007/s11060-006-9220-3. Epub 2006 Sep 27.
5 Importin- and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function.J Cell Sci. 2017 Aug 1;130(15):2564-2578. doi: 10.1242/jcs.197905. Epub 2017 Jun 9.
6 Coupling and uncoupling of tumor immunity and autoimmunity.J Exp Med. 1999 Dec 6;190(11):1717-22. doi: 10.1084/jem.190.11.1717.
7 Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors.Int J Cancer. 2004 Nov 20;112(4):636. doi: 10.1002/ijc.20450.
8 Sumoylation in p27kip1 via RanBP2 promotes cancer cell growth in cholangiocarcinoma cell line QBC939.BMC Mol Biol. 2017 Sep 7;18(1):23. doi: 10.1186/s12867-017-0100-5.
9 Chromosome deletion and multiple cartilaginous exostoses.Eur J Pediatr. 1980 Mar;133(2):163-6. doi: 10.1007/BF00441586.
10 Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole (Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance.Front Physiol. 2019 May 1;10:508. doi: 10.3389/fphys.2019.00508. eCollection 2019.
11 Expression of a thioredoxin-related protein-1 is induced by prostaglandin E(2).Int J Cancer. 2006 Apr 1;118(7):1670-9. doi: 10.1002/ijc.21572.
12 Linking Nucleoporins, Mitosis, and Colon Cancer.Cell Chem Biol. 2016 May 19;23(5):537-539. doi: 10.1016/j.chembiol.2016.05.004.
13 Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009 Jan;84(1):44-51. doi: 10.1016/j.ajhg.2008.12.009.
14 Cancer-testis and melanocyte-differentiation antigen expression in malignant glioma and meningioma.J Clin Neurosci. 2012 Jul;19(7):1016-21. doi: 10.1016/j.jocn.2011.10.008. Epub 2012 Apr 23.
15 Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma.Int J Cancer. 2000 Apr 1;86(1):89-94. doi: 10.1002/(sici)1097-0215(20000401)86:1<89::aid-ijc14>3.0.co;2-i.
16 Identification of four trp1 gene variants murine pancreatic beta-cells.Diabetologia. 1997 May;40(5):528-32. doi: 10.1007/s001250050711.
17 Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma.J Immunother. 2003 Jul-Aug;26(4):301-12. doi: 10.1097/00002371-200307000-00002.
18 p44/42 MAPK signaling is a prime target activated by phenylethyl resorcinol in its anti-melanogenic action. Phytomedicine. 2019 May;58:152877. doi: 10.1016/j.phymed.2019.152877. Epub 2019 Feb 26.
19 Chromosome abnormalities in bone marrow of Fanconi anemia patients.Cancer Genet Cytogenet. 1993 Jan;65(1):47-50. doi: 10.1016/0165-4608(93)90057-s.
20 Safety and efficacy of Tet-regulated IL-12 expression in cancer-specific T cells.Oncoimmunology. 2018 Dec 5;8(3):1542917. doi: 10.1080/2162402X.2018.1542917. eCollection 2019.
21 A gene transfer comparative study of HSA-conjugated antiangiogenic factors in a transgenic mouse model of metastatic ocular cancer.Cancer Gene Ther. 2007 Mar;14(3):251-61. doi: 10.1038/sj.cgt.7701005. Epub 2006 Nov 3.
22 SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis.Cancer Lett. 2009 Jun 8;278(1):41-8. doi: 10.1016/j.canlet.2008.12.022. Epub 2009 Jan 25.
23 Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms.Eur Spine J. 2006 May;15(5):613-9. doi: 10.1007/s00586-005-0988-1. Epub 2005 Aug 17.
24 A final word on the tricho-rhino-phalangeal syndromes.Clin Genet. 1987 Apr;31(4):273-5. doi: 10.1111/j.1399-0004.1987.tb02806.x.
25 Role of microphthalmia transcription factor in regulation of melanocyte differentiation marker TRP-1.Biochem Biophys Res Commun. 1999 Mar 24;256(3):657-63. doi: 10.1006/bbrc.1999.0400.
26 Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo.Br J Dermatol. 2001 Jan;144(1):55-65. doi: 10.1046/j.1365-2133.2001.03952.x.
27 Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons.Cell Mol Life Sci. 2019 Sep;76(17):3407-3432. doi: 10.1007/s00018-019-03078-5. Epub 2019 Apr 3.
28 Influenza-Associated Acute Necrotizing Encephalopathy in Siblings.J Pediatric Infect Dis Soc. 2018 Aug 17;7(3):e172-e177. doi: 10.1093/jpids/piy033.
29 Presence of tau astrogliopathy in frontotemporal dementia caused by a novel Grn nonsense (Trp2*) mutation.Neurobiol Aging. 2019 Apr;76:214.e11-214.e15. doi: 10.1016/j.neurobiolaging.2018.11.010. Epub 2018 Nov 20.
30 MRI Phenotyping of COL9A2/Trp2 and COL9A3/Trp3 Alleles in Lumbar Disc Disease: A Case-control Study in South-Western Iranian Population Reveals a Significant Trp3-Disease Association in Males.Spine (Phila Pa 1976). 2016 Nov 1;41(21):1661-1667. doi: 10.1097/BRS.0000000000001617.
31 A tandem triplication, trp(1)(q21q32), in a patient with follicular lymphoma: a case study and review of the literature.Cancer Genet Cytogenet. 2009 Mar;189(2):127-31. doi: 10.1016/j.cancergencyto.2008.11.005.
32 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
33 ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma.J Pathol. 2017 Feb;241(3):316-323. doi: 10.1002/path.4836. Epub 2016 Dec 15.
34 Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes.Dis Model Mech. 2017 May 1;10(5):559-579. doi: 10.1242/dmm.027730. Epub 2017 Jan 18.
35 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
36 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
37 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
38 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
39 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
40 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
41 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
42 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
43 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
44 The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009 Jun;23(6):1019-28.
45 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
46 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
47 Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol Appl Pharmacol. 2008 Jan 15;226(2):199-205. doi: 10.1016/j.taap.2007.09.004. Epub 2007 Sep 15.