General Information of Drug Off-Target (DOT) (ID: OTGZLW4J)

DOT Name Vimentin
Gene Name VIM
Related Disease
Cataract 30 ( )
Pulverulent cataract ( )
UniProt ID
VIME_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1GK4; 1GK6; 1GK7; 3G1E; 3KLT; 3S4R; 3SSU; 3SWK; 3TRT; 3UF1; 4MCY; 4MCZ; 4MD0; 4MD5; 4MDI; 4MDJ; 4YPC; 4YV3; 5WHF; 6ATF; 6ATI; 6BIR; 6YXK
Pfam ID
PF00038 ; PF04732
Sequence
MSTRSVSSSSYRRMFGGPGTASRPSSSRSYVTTSTRTYSLGSALRPSTSRSLYASSPGGV
YATRSSAVRLRSSVPGVRLLQDSVDFSLADAINTEFKNTRTNEKVELQELNDRFANYIDK
VRFLEQQNKILLAELEQLKGQGKSRLGDLYEEEMRELRRQVDQLTNDKARVEVERDNLAE
DIMRLREKLQEEMLQREEAENTLQSFRQDVDNASLARLDLERKVESLQEEIAFLKKLHEE
EIQELQAQIQEQHVQIDVDVSKPDLTAALRDVRQQYESVAAKNLQEAEEWYKSKFADLSE
AANRNNDALRQAKQESTEYRRQVQSLTCEVDALKGTNESLERQMREMEENFAVEAANYQD
TIGRLQDEIQNMKEEMARHLREYQDLLNVKMALDIEIATYRKLLEGEESRISLPLPNFSS
LNLRETNLDSLPLVDTHSKRTLLIKTVETRDGQVINETSQHHDDLE
Function
Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally; Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2.
Tissue Specificity
Highly expressed in fibroblasts, some expression in T- and B-lymphocytes, and little or no expression in Burkitt's lymphoma cell lines. Expressed in many hormone-independent mammary carcinoma cell lines.
KEGG Pathway
Cytoskeleton in muscle cells (hsa04820 )
Epstein-Barr virus infection (hsa05169 )
MicroR.s in cancer (hsa05206 )
Reactome Pathway
Striated Muscle Contraction (R-HSA-390522 )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
RHOBTB1 GTPase cycle (R-HSA-9013422 )
Chaperone Mediated Autophagy (R-HSA-9613829 )
Late endosomal microautophagy (R-HSA-9615710 )
Aggrephagy (R-HSA-9646399 )
Caspase-mediated cleavage of cytoskeletal proteins (R-HSA-264870 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cataract 30 DISIXL03 Strong Autosomal dominant [1]
Pulverulent cataract DISMJ2AH Supportive Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Aspirin DM672AH Approved Vimentin increases the Gastrointestinal tract mucosal discolouration ADR of Aspirin. [90]
Topotecan DMP6G8T Approved Vimentin affects the response to substance of Topotecan. [91]
PEITC DMOMN31 Phase 2 Vimentin affects the binding of PEITC. [92]
Sulforaphane DMQY3L0 Investigative Vimentin affects the binding of Sulforaphane. [92]
4-hydroxy-2-nonenal DM2LJFZ Investigative Vimentin affects the binding of 4-hydroxy-2-nonenal. [93]
------------------------------------------------------------------------------------
90 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Vimentin. [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Vimentin. [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Vimentin. [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Vimentin. [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Vimentin. [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Vimentin. [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Vimentin. [8]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Vimentin. [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Vimentin. [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Vimentin. [11]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Vimentin. [12]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Vimentin. [2]
Testosterone DM7HUNW Approved Testosterone increases the expression of Vimentin. [13]
Triclosan DMZUR4N Approved Triclosan affects the expression of Vimentin. [14]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Vimentin. [15]
Decitabine DMQL8XJ Approved Decitabine decreases the expression of Vimentin. [16]
Marinol DM70IK5 Approved Marinol decreases the expression of Vimentin. [17]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Vimentin. [18]
Selenium DM25CGV Approved Selenium increases the expression of Vimentin. [19]
Menadione DMSJDTY Approved Menadione decreases the expression of Vimentin. [20]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Vimentin. [21]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Vimentin. [22]
Folic acid DMEMBJC Approved Folic acid increases the expression of Vimentin. [23]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Vimentin. [24]
Rosiglitazone DMILWZR Approved Rosiglitazone affects the expression of Vimentin. [25]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Vimentin. [26]
Nicotine DMWX5CO Approved Nicotine decreases the expression of Vimentin. [27]
Azacitidine DMTA5OE Approved Azacitidine increases the expression of Vimentin. [28]
Capsaicin DMGMF6V Approved Capsaicin decreases the expression of Vimentin. [29]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of Vimentin. [30]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Vimentin. [31]
Acocantherin DM7JT24 Approved Acocantherin decreases the expression of Vimentin. [32]
Phenytoin DMNOKBV Approved Phenytoin increases the expression of Vimentin. [33]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Vimentin. [34]
Cholecalciferol DMGU74E Approved Cholecalciferol decreases the expression of Vimentin. [36]
Warfarin DMJYCVW Approved Warfarin decreases the expression of Vimentin. [37]
Tacrolimus DMZ7XNQ Approved Tacrolimus increases the expression of Vimentin. [38]
Crizotinib DM4F29C Approved Crizotinib decreases the expression of Vimentin. [39]
Bleomycin DMNER5S Approved Bleomycin increases the expression of Vimentin. [40]
Sodium chloride DMM3950 Approved Sodium chloride increases the expression of Vimentin. [41]
LY2835219 DM93VBZ Approved LY2835219 increases the expression of Vimentin. [42]
Ketamine DMT5HA4 Approved Ketamine increases the expression of Vimentin. [43]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Vimentin. [44]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Vimentin. [4]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of Vimentin. [36]
HMPL-004 DM29XGY Phase 3 HMPL-004 decreases the expression of Vimentin. [45]
I3C DMIGFOR Phase 3 I3C decreases the expression of Vimentin. [46]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Vimentin. [47]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the expression of Vimentin. [48]
Belinostat DM6OC53 Phase 2 Belinostat increases the expression of Vimentin. [49]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Vimentin. [50]
G1 DMTV42K Phase 1/2 G1 decreases the expression of Vimentin. [51]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Vimentin. [53]
Arecoline DMFJZK3 Phase 1 Arecoline increases the expression of Vimentin. [54]
PMID26394986-Compound-10 DMP8RQ4 Patented PMID26394986-Compound-10 affects the expression of Vimentin. [55]
UNC0379 DMD1E4J Preclinical UNC0379 increases the expression of Vimentin. [56]
PJ34 DMXO6YH Preclinical PJ34 decreases the expression of Vimentin. [57]
Wortmannin DM8EVK5 Terminated Wortmannin decreases the expression of Vimentin. [58]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Vimentin. [59]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Vimentin. [60]
Coumarin DM0N8ZM Investigative Coumarin decreases the expression of Vimentin. [61]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Vimentin. [62]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Vimentin. [63]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Vimentin. [64]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Vimentin. [65]
Lithium chloride DMHYLQ2 Investigative Lithium chloride decreases the expression of Vimentin. [66]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of Vimentin. [67]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl decreases the expression of Vimentin. [30]
Microcystin-LR DMTMLRN Investigative Microcystin-LR increases the expression of Vimentin. [69]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Vimentin. [70]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid affects the expression of Vimentin. [71]
Cordycepin DM72Y01 Investigative Cordycepin decreases the expression of Vimentin. [72]
Chrysin DM7V2LG Investigative Chrysin decreases the expression of Vimentin. [73]
15-deoxy-Delta(12, 14)-prostaglandin J(2) DM8VUX3 Investigative 15-deoxy-Delta(12, 14)-prostaglandin J(2) decreases the expression of Vimentin. [74]
3,7,3',4'-TETRAHYDROXYFLAVONE DMES906 Investigative 3,7,3',4'-TETRAHYDROXYFLAVONE decreases the expression of Vimentin. [75]
27-hydroxycholesterol DM2L6OZ Investigative 27-hydroxycholesterol increases the expression of Vimentin. [76]
gingerol DMNXYSM Investigative gingerol decreases the expression of Vimentin. [77]
MANGIFERIN DMWAF5Z Investigative MANGIFERIN decreases the expression of Vimentin. [78]
NMS-873 DMYKZ6U Investigative NMS-873 decreases the expression of Vimentin. [79]
DIECKOL DMBCK4G Investigative DIECKOL decreases the expression of Vimentin. [80]
Bafilomycin A1 DMUNK59 Investigative Bafilomycin A1 increases the expression of Vimentin. [81]
Hydroxyestradiol DMJXQME Investigative Hydroxyestradiol increases the expression of Vimentin. [82]
Tyrphostin Ag-1478 DM87ZIH Investigative Tyrphostin Ag-1478 decreases the expression of Vimentin. [58]
N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE DM2D4KY Investigative N-(3-METHYLBUT-2-EN-1-YL)-9H-PURIN-6-AMINE decreases the expression of Vimentin. [12]
ROLIPRAM DMJ03UM Investigative ROLIPRAM decreases the expression of Vimentin. [83]
TRISMETHOXYRESVERATROL DM6USPC Investigative TRISMETHOXYRESVERATROL decreases the expression of Vimentin. [85]
schisandrin A DMWQ480 Investigative schisandrin A decreases the expression of Vimentin. [86]
NADA DM3ORGM Investigative NADA decreases the expression of Vimentin. [87]
PI-3065 DMCQUWI Investigative PI-3065 decreases the expression of Vimentin. [88]
J-009747 DMQSB6N Investigative J-009747 increases the expression of Vimentin. [89]
------------------------------------------------------------------------------------
⏷ Show the Full List of 90 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin affects the binding of Vimentin. [35]
toxaphene DM4R657 Investigative toxaphene increases the degradation of Vimentin. [84]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Vimentin. [52]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
acrolein DMAMCSR Investigative acrolein increases the metabolism of Vimentin. [68]
------------------------------------------------------------------------------------

References

1 Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet. 2009 Mar 15;18(6):1052-7. doi: 10.1093/hmg/ddn440. Epub 2009 Jan 6.
2 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
3 Activation of hypoxia-inducible factor by cobalt is associated with the attenuation of tissue injury and apoptosis in cyclosporine-induced nephropathy. Tohoku J Exp Med. 2012 Mar;226(3):197-206. doi: 10.1620/tjem.226.197.
4 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
5 RNA sequence analysis of inducible pluripotent stem cell-derived cardiomyocytes reveals altered expression of DNA damage and cell cycle genes in response to doxorubicin. Toxicol Appl Pharmacol. 2018 Oct 1;356:44-53.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Bisphenol A and nonylphenol have the potential to stimulate the migration of ovarian cancer cells by inducing epithelial-mesenchymal transition via an estrogen receptor dependent pathway. Chem Res Toxicol. 2015 Apr 20;28(4):662-71. doi: 10.1021/tx500443p. Epub 2015 Mar 3.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Inorganic arsenic exposure promotes malignant progression by HDAC6-mediated down-regulation of HTRA1. J Appl Toxicol. 2023 Aug;43(8):1214-1224. doi: 10.1002/jat.4457. Epub 2023 Mar 11.
10 Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-/Smad signaling pathways. Cell Biol Toxicol. 2021 Jun;37(3):479-496. doi: 10.1007/s10565-020-09562-0. Epub 2020 Oct 17.
11 Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun. 2018 Aug 9;9(1):3069. doi: 10.1038/s41467-018-05402-2.
12 Immediate up-regulation of the calcium-binding protein S100P and its involvement in the cytokinin-induced differentiation of human myeloid leukemia cells. Biochim Biophys Acta. 2005 Sep 10;1745(2):156-65.
13 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
14 The modulatory effect of triclosan on the reversion of the activated phenotype of LX-2 hepatic stellate cells. J Biochem Mol Toxicol. 2020 Jan;34(1):e22413. doi: 10.1002/jbt.22413. Epub 2019 Nov 12.
15 Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. Int J Oncol. 2014 Jul;45(1):448-58.
16 Epigenetic silencing of SFRP5 promotes the metastasis and invasion of chondrosarcoma by expression inhibition and Wnt signaling pathway activation. Chem Biol Interact. 2018 Dec 25;296:1-8. doi: 10.1016/j.cbi.2018.08.020. Epub 2018 Aug 18.
17 ?9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer. Oncol Lett. 2018 Jun;15(6):8527-8535. doi: 10.3892/ol.2018.8407. Epub 2018 Apr 2.
18 Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol. 2018 Jan;92(1):469-485.
19 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
20 Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem Biol Interact. 2019 Aug 25;309:108725. doi: 10.1016/j.cbi.2019.108725. Epub 2019 Jun 22.
21 Resveratrol induces chemosensitization to 5-fluorouracil through up-regulation of intercellular junctions, Epithelial-to-mesenchymal transition and apoptosis in colorectal cancer. Biochem Pharmacol. 2015 Nov 1;98(1):51-68. doi: 10.1016/j.bcp.2015.08.105. Epub 2015 Aug 24.
22 Dexamethasone inhibits pancreatic tumor growth in preclinical models: Involvement of activating glucocorticoid receptor. Toxicol Appl Pharmacol. 2020 Aug 15;401:115118. doi: 10.1016/j.taap.2020.115118. Epub 2020 Jul 1.
23 Higher Concentrations of Folic Acid Cause Oxidative Stress, Acute Cytotoxicity, and Long-Term Fibrogenic Changes in Kidney Epithelial Cells. Chem Res Toxicol. 2022 Nov 21;35(11):2168-2179. doi: 10.1021/acs.chemrestox.2c00258. Epub 2022 Nov 10.
24 The Antihelminthic Niclosamide Inhibits Cancer Stemness, Extracellular Matrix Remodeling, and Metastasis through Dysregulation of the Nuclear -catenin/c-Myc axis in OSCC. Sci Rep. 2018 Aug 24;8(1):12776. doi: 10.1038/s41598-018-30692-3.
25 Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring). 2010 Jan;18(1):27-34. doi: 10.1038/oby.2009.208. Epub 2009 Jun 25.
26 Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer. 2010 May;68(2):154-60. doi: 10.1016/j.lungcan.2009.06.012. Epub 2009 Jul 23.
27 Effects of tobacco compounds on gene expression in fetal lung fibroblasts. Environ Toxicol. 2008 Aug;23(4):423-34.
28 The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod. 2010 Nov;25(11):2859-69.
29 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
30 Down-regulation of vimentin by triorganotin isothiocyanates-nuclear retinoid X receptor agonists: A proteomic approach. Toxicol Lett. 2020 Jan;318:22-29. doi: 10.1016/j.toxlet.2019.10.004. Epub 2019 Oct 18.
31 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
32 In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Environ Toxicol. 2021 Jul;36(7):1338-1348. doi: 10.1002/tox.23130. Epub 2021 Mar 24.
33 Role of phenytoin in wound healing: microarray analysis of early transcriptional responses in human dermal fibroblasts. Biochem Biophys Res Commun. 2004 Feb 13;314(3):661-6. doi: 10.1016/j.bbrc.2003.12.146.
34 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
35 Untargeted Proteomics and Systems-Based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial Cells. Chem Res Toxicol. 2015 Oct 19;28(10):1903-13. doi: 10.1021/acs.chemrestox.5b00105. Epub 2015 Sep 21.
36 Cholecalciferol (vitamin D3) and the retinoid N-(4-hydroxyphenyl)retinamide (4-HPR) are synergistic for chemoprevention of prostate cancer. J Exp Ther Oncol. 2006;5(4):323-33.
37 Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res. 2015 Sep 15;75(18):3699-705. doi: 10.1158/0008-5472.CAN-14-2887-T. Epub 2015 Jul 23.
38 GSK3, snail, and adhesion molecule regulation by cyclosporine A in renal tubular cells. Toxicol Sci. 2012 Jun;127(2):425-37. doi: 10.1093/toxsci/kfs108. Epub 2012 Mar 12.
39 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
40 Pulmonary fibrosis model using micro-CT analyzable human PSC-derived alveolar organoids containing alveolar macrophage-like cells. Cell Biol Toxicol. 2022 Aug;38(4):557-575. doi: 10.1007/s10565-022-09698-1. Epub 2022 Mar 10.
41 Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology. 2014 Aug;8(5):485-507.
42 Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Oncotarget. 2017 Jul 4;8(27):43678-43691. doi: 10.18632/oncotarget.18435.
43 Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-1. Am J Physiol Renal Physiol. 2017 Oct 1;313(4):F961-F972. doi: 10.1152/ajprenal.00686.2016. Epub 2017 Mar 22.
44 Impairment of tumor-initiating stem-like property and reversal of epithelial-mesenchymal transdifferentiation in head and neck cancer by resveratrol treatment. Mol Nutr Food Res. 2012 Aug;56(8):1247-58. doi: 10.1002/mnfr.201200150. Epub 2012 Jun 13.
45 Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/-catenin, PI3K/AKT and NF-B signaling pathways. Chem Biol Interact. 2022 Sep 25;365:110068. doi: 10.1016/j.cbi.2022.110068. Epub 2022 Jul 31.
46 Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther. 2007 Nov;6(11):3071-9. doi: 10.1158/1535-7163.MCT-07-0117.
47 Amiodarone induces cell proliferation and myofibroblast differentiation via ERK1/2 and p38 MAPK signaling in fibroblasts. Biomed Pharmacother. 2019 Jul;115:108889. doi: 10.1016/j.biopha.2019.108889. Epub 2019 May 6.
48 Inhibition of NF-B and metastasis in irinotecan (CPT-11)-resistant LoVo colon cancer cells by thymoquinone via JNK and p38. Environ Toxicol. 2017 Feb;32(2):669-678. doi: 10.1002/tox.22268. Epub 2016 Apr 5.
49 Histone acetylation-mediated regulation of the Hippo pathway. PLoS One. 2013 May 6;8(5):e62478. doi: 10.1371/journal.pone.0062478. Print 2013.
50 Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-B-dependent MMP-9 and epithelial-mesenchymal transition expressions. Food Chem Toxicol. 2015 Apr;78:33-41. doi: 10.1016/j.fct.2015.01.012. Epub 2015 Feb 2.
51 Morphologic effects of estrogen stimulation on 3D MCF-7 microtissues. Toxicol Lett. 2016 Apr 25;248:1-8.
52 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
53 Bromodomain and extraterminal inhibition blocks tumor progression and promotes differentiation in?neuroblastoma. Surgery. 2015 Sep;158(3):819-26. doi: 10.1016/j.surg.2015.04.017. Epub 2015 Jun 9.
54 Arecoline induces epithelial mesenchymal transition in HK2 cells by upregulating the ERK-mediated signaling pathway. Environ Toxicol. 2020 Sep;35(9):1007-1014. doi: 10.1002/tox.22937. Epub 2020 May 22.
55 Antitumor progression potential of morusin suppressing STAT3 and NFB in human hepatoma SK-Hep1 cells. Toxicol Lett. 2015 Jan 22;232(2):490-8. doi: 10.1016/j.toxlet.2014.11.031. Epub 2014 Dec 2.
56 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
57 Effects of PARP-1 inhibitor and ERK inhibitor on epithelial mesenchymal transitions of the ovarian cancer SKOV3 cells. Pharmacol Rep. 2016 Dec;68(6):1225-1229. doi: 10.1016/j.pharep.2016.08.001. Epub 2016 Aug 2.
58 (-)-Liriopein B Suppresses Breast Cancer Progression via Inhibition of Multiple Kinases. Chem Res Toxicol. 2015 May 18;28(5):897-906. doi: 10.1021/tx500518j. Epub 2015 Apr 21.
59 Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int J Oncol. 2012 Jul;41(1):369-77.
60 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
61 A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22553. doi: 10.1002/jbt.22553. Epub 2020 Jun 24.
62 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
63 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
64 Hydrogen sulfide attenuates paraquat-induced epithelial-mesenchymal transition of human alveolar epithelial cells through regulating transforming growth factor-1/Smad2/3 signaling pathway. J Appl Toxicol. 2019 Mar;39(3):432-440. doi: 10.1002/jat.3734. Epub 2018 Sep 28.
65 The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells. PLoS One. 2011;6(7):e22806. doi: 10.1371/journal.pone.0022806. Epub 2011 Jul 29.
66 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
67 Chlorpyrifos subthreshold exposure induces epithelial-mesenchymal transition in breast cancer cells. Ecotoxicol Environ Saf. 2020 Dec 1;205:111312. doi: 10.1016/j.ecoenv.2020.111312. Epub 2020 Sep 18.
68 Toxicity of smoke extracts towards A549 lung cells: role of acrolein and suppression by carbonyl scavengers. Chem Biol Interact. 2010 Feb 12;183(3):416-24.
69 Microcystin-LR promotes epithelial-mesenchymal transition in colorectal cancer cells through PI3-K/AKT and SMAD2. Toxicol Lett. 2017 Jan 4;265:53-60. doi: 10.1016/j.toxlet.2016.11.004. Epub 2016 Nov 14.
70 Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol Sci. 2012 Aug;128(2):365-76. doi: 10.1093/toxsci/kfs163. Epub 2012 May 2.
71 Cancer-related proteins in serum are altered in workers occupationally exposed to polycyclic aromatic hydrocarbons: a cross-sectional study. Carcinogenesis. 2019 Jul 6;40(6):771-781. doi: 10.1093/carcin/bgz022.
72 [Cordycepin inhibits the proliferation and migration of human gastric cancer cells by suppressing lipid metabolism via AMPK and MAPK activation]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2022 Jun;38(6):513-521.
73 Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol. 2014 Jan;34(1):105-12. doi: 10.1002/jat.2941. Epub 2013 Oct 10.
74 The PPARgamma ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol. 2004 Aug;25(2):493-502.
75 Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition. Chem Biol Interact. 2019 Apr 25;303:14-21. doi: 10.1016/j.cbi.2019.02.020. Epub 2019 Feb 22.
76 The 14-3-3/GSK-3/-catenin complex regulates EndMT induced by 27-hydroxycholesterol in HUVECs and promotes the migration of breast cancer cells. Cell Biol Toxicol. 2021 Aug;37(4):515-529. doi: 10.1007/s10565-020-09564-y. Epub 2020 Nov 1.
77 6-Gingerol suppresses tumor cell metastasis by increasing YAP(ser127) phosphorylation in renal cell carcinoma. J Biochem Mol Toxicol. 2021 Jan;35(1):e22609. doi: 10.1002/jbt.22609. Epub 2020 Sep 14.
78 Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and -catenin signaling pathway. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):180-90. doi: 10.1016/j.taap.2013.05.011. Epub 2013 May 22.
79 Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol. 2018 Oct;233(10):7148-7164. doi: 10.1002/jcp.26639. Epub 2018 Apr 25.
80 Dieckol inhibits non-small-cell lung cancer cell proliferation and migration by regulating the PI3K/AKT signaling pathway. J Biochem Mol Toxicol. 2019 Aug;33(8):e22346. doi: 10.1002/jbt.22346. Epub 2019 Jul 10.
81 Autophagy mediates bronchial cell malignant transformation induced by chronic arsenic exposure via MEK/ERK1/2 pathway. Toxicol Lett. 2020 Oct 10;332:155-163. doi: 10.1016/j.toxlet.2020.06.006. Epub 2020 Jul 6.
82 Long-term exposure of 4-hydroxyestradiol induces the cancer cell characteristics via upregulating CYP1B1 in MCF-10A cells. Toxicol Mech Methods. 2019 Nov;29(9):686-692. doi: 10.1080/15376516.2019.1650146. Epub 2019 Aug 30.
83 Rolipram suppresses migration and invasion of human choriocarcinoma cells by inhibiting phosphodiesterase 4-mediated epithelial-mesenchymal transition. J Biochem Mol Toxicol. 2023 Jul;37(7):e23363. doi: 10.1002/jbt.23363. Epub 2023 Apr 5.
84 Toxaphene, but not beryllium, induces human neutrophil chemotaxis and apoptosis via reactive oxygen species (ROS): involvement of caspases and ROS in the degradation of cytoskeletal proteins. Clin Immunol. 2002 Jul;104(1):40-8. doi: 10.1006/clim.2002.5226.
85 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2013 Nov 1;272(3):746-56. doi: 10.1016/j.taap.2013.07.019. Epub 2013 Aug 3.
86 MEG3 is restored by schisandrin A and represses tumor growth in choriocarcinoma cells. J Biochem Mol Toxicol. 2020 Apr;34(4):e22455. doi: 10.1002/jbt.22455. Epub 2020 Feb 14.
87 N-arachidonoyl dopamine inhibits epithelial-mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. J Biochem Mol Toxicol. 2021 Apr;35(4):e22693. doi: 10.1002/jbt.22693. Epub 2021 Jan 4.
88 PI3K inhibitor PI-3065 induces apoptosis in hepatocellular carcinoma cells by targeting survivin. Chem Biol Interact. 2023 Feb 1;371:110343. doi: 10.1016/j.cbi.2023.110343. Epub 2023 Jan 6.
89 Reactive carbonyl compounds impair wound healing by vimentin collapse and loss of the primary cilium. Food Chem Toxicol. 2017 Oct;108(Pt A):128-138. doi: 10.1016/j.fct.2017.07.055. Epub 2017 Jul 29.
90 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
91 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
92 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.
93 Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: protein carbonylation is diminished by ascorbic acid. Chem Res Toxicol. 2010 Jan;23(1):37-47. doi: 10.1021/tx9002462.