General Information of Drug Off-Target (DOT) (ID: OTK71JYU)

DOT Name Activated RNA polymerase II transcriptional coactivator p15 (SUB1)
Synonyms Positive cofactor 4; PC4; SUB1 homolog; p14
Gene Name SUB1
Related Disease
Adenocarcinoma ( )
Carcinoma ( )
Chromosomal disorder ( )
Lung adenocarcinoma ( )
Transitional cell carcinoma ( )
Urinary bladder cancer ( )
Acute monocytic leukemia ( )
Adult lymphoma ( )
Adult T-cell leukemia/lymphoma ( )
Advanced cancer ( )
Astrocytoma ( )
Bladder cancer ( )
Breast cancer ( )
Carcinoma of esophagus ( )
Clear cell renal carcinoma ( )
Colorectal carcinoma ( )
Esophageal squamous cell carcinoma ( )
Glioma ( )
Head-neck squamous cell carcinoma ( )
Hepatitis B virus infection ( )
Hepatitis C virus infection ( )
Hepatocellular carcinoma ( )
Leukemia ( )
Lung cancer ( )
Lymphoma ( )
Myelodysplastic syndrome ( )
Neoplasm of esophagus ( )
Ovarian neoplasm ( )
Pancreatic cancer ( )
Pediatric lymphoma ( )
Plasma cell myeloma ( )
Renal cell carcinoma ( )
Small lymphocytic lymphoma ( )
Squamous cell carcinoma ( )
T-cell lymphoma ( )
Urinary bladder neoplasm ( )
Acute lymphocytic leukaemia ( )
Acute myelogenous leukaemia ( )
Gastric cancer ( )
Promyelocytic leukaemia ( )
Childhood acute lymphoblastic leukemia ( )
Acute leukaemia ( )
Breast carcinoma ( )
leukaemia ( )
Non-hodgkin lymphoma ( )
Non-small-cell lung cancer ( )
Retinoblastoma ( )
Stomach cancer ( )
UniProt ID
TCP4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1PCF; 2C62; 2PHE; 4USG; 6YCS; 7E4W
Pfam ID
PF02229
Sequence
MPKSKELVSSSSSGSDSDSEVDKKLKRKKQVAPEKPVKKQKTGETSRALSSSKQSSSSRD
DNMFQIGKMRYVSVRDFKGKVLIDIREYWMDPEGEMKPGRKGISLNPEQWSQLKEQISDI
DDAVRKL
Function
General coactivator that functions cooperatively with TAFs and mediates functional interactions between upstream activators and the general transcriptional machinery. May be involved in stabilizing the multiprotein transcription complex. Binds single-stranded DNA. Also binds, in vitro, non-specifically to double-stranded DNA (ds DNA).

Molecular Interaction Atlas (MIA) of This DOT

48 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenocarcinoma DIS3IHTY Definitive Posttranslational Modification [1]
Carcinoma DISH9F1N Definitive Biomarker [2]
Chromosomal disorder DISM5BB5 Definitive Genetic Variation [3]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [4]
Transitional cell carcinoma DISWVVDR Definitive Altered Expression [5]
Urinary bladder cancer DISDV4T7 Definitive Posttranslational Modification [6]
Acute monocytic leukemia DIS28NEL Strong Posttranslational Modification [7]
Adult lymphoma DISK8IZR Strong Altered Expression [8]
Adult T-cell leukemia/lymphoma DIS882XU Strong Biomarker [9]
Advanced cancer DISAT1Z9 Strong Altered Expression [10]
Astrocytoma DISL3V18 Strong Genetic Variation [11]
Bladder cancer DISUHNM0 Strong Posttranslational Modification [6]
Breast cancer DIS7DPX1 Strong Biomarker [12]
Carcinoma of esophagus DISS6G4D Strong Altered Expression [13]
Clear cell renal carcinoma DISBXRFJ Strong Genetic Variation [14]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [15]
Esophageal squamous cell carcinoma DIS5N2GV Strong Altered Expression [16]
Glioma DIS5RPEH Strong Biomarker [17]
Head-neck squamous cell carcinoma DISF7P24 Strong Posttranslational Modification [18]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [19]
Hepatitis C virus infection DISQ0M8R Strong Altered Expression [20]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [21]
Leukemia DISNAKFL Strong Genetic Variation [22]
Lung cancer DISCM4YA Strong Posttranslational Modification [23]
Lymphoma DISN6V4S Strong Altered Expression [8]
Myelodysplastic syndrome DISYHNUI Strong Posttranslational Modification [24]
Neoplasm of esophagus DISOLKAQ Strong Altered Expression [13]
Ovarian neoplasm DISEAFTY Strong Posttranslational Modification [25]
Pancreatic cancer DISJC981 Strong Biomarker [26]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [8]
Plasma cell myeloma DIS0DFZ0 Strong Posttranslational Modification [27]
Renal cell carcinoma DISQZ2X8 Strong Genetic Variation [14]
Small lymphocytic lymphoma DIS30POX Strong Biomarker [28]
Squamous cell carcinoma DISQVIFL Strong Biomarker [29]
T-cell lymphoma DISSXRTQ Strong Altered Expression [30]
Urinary bladder neoplasm DIS7HACE Strong Posttranslational Modification [6]
Acute lymphocytic leukaemia DISPX75S moderate Posttranslational Modification [24]
Acute myelogenous leukaemia DISCSPTN moderate Posttranslational Modification [24]
Gastric cancer DISXGOUK moderate Biomarker [31]
Promyelocytic leukaemia DISYGG13 moderate Posttranslational Modification [32]
Childhood acute lymphoblastic leukemia DISJ5D6U Disputed Posttranslational Modification [24]
Acute leukaemia DISDQFDI Limited Biomarker [24]
Breast carcinoma DIS2UE88 Limited Biomarker [12]
leukaemia DISS7D1V Limited Genetic Variation [22]
Non-hodgkin lymphoma DISS2Y8A Limited Biomarker [33]
Non-small-cell lung cancer DIS5Y6R9 Limited Biomarker [16]
Retinoblastoma DISVPNPB Limited Altered Expression [34]
Stomach cancer DISKIJSX Limited Biomarker [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 48 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [35]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [36]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [38]
Quercetin DM3NC4M Approved Quercetin increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [39]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [40]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [41]
Marinol DM70IK5 Approved Marinol decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [42]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [43]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [44]
Paclitaxel DMLB81S Approved Paclitaxel decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [45]
Mitomycin DMH0ZJE Approved Mitomycin increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [46]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [47]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [49]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [43]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [50]
geraniol DMS3CBD Investigative geraniol decreases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [51]
AHPN DM8G6O4 Investigative AHPN increases the expression of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [52]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [48]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Activated RNA polymerase II transcriptional coactivator p15 (SUB1). [48]
------------------------------------------------------------------------------------

References

1 EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1.Cell Oncol (Dordr). 2011 Jun;34(3):209-14. doi: 10.1007/s13402-011-0028-6. Epub 2011 May 3.
2 p14 expression differences in ovarian benign, borderline and malignant epithelial tumors.J Ovarian Res. 2016 Oct 22;9(1):69. doi: 10.1186/s13048-016-0275-2.
3 Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells.Med Oncol. 2012 Dec;29(5):3547-56. doi: 10.1007/s12032-012-0289-6. Epub 2012 Jul 7.
4 Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer.PLoS One. 2016 Mar 17;11(3):e0151516. doi: 10.1371/journal.pone.0151516. eCollection 2016.
5 Deletions of p15 and p16 in schistosomal bladder cancer correlate with transforming growth factor-alpha expression.Clin Biochem. 2004 Dec;37(12):1098-104. doi: 10.1016/j.clinbiochem.2004.09.006.
6 Hypermethylation of E-cadherin, p16, p14, and RASSF1A genes in pathologically normal urothelium predict bladder recurrence of bladder cancer after transurethral resection.Urol Oncol. 2012 Mar-Apr;30(2):177-81. doi: 10.1016/j.urolonc.2010.01.002. Epub 2010 Aug 25.
7 KG-1 and KG-1a model the p15 CpG island methylation observed in acute myeloid leukemia patients.Leuk Res. 2001 Oct;25(10):917-25. doi: 10.1016/s0145-2126(01)00053-4.
8 Primary malignant lymphoma of the brain: frequent abnormalities and inactivation of p14 tumor suppressor gene.Cancer Sci. 2005 Jan;96(1):38-41. doi: 10.1111/j.1349-7006.2005.00003.x.
9 Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL).Leukemia. 2002 Jun;16(6):1069-85. doi: 10.1038/sj.leu.2402458.
10 An Oncolytic Adenovirus Vector Expressing p14 FAST Protein Induces Widespread Syncytium Formation and Reduces Tumor Growth Rate InVivo.Mol Ther Oncolytics. 2019 May 15;14:107-120. doi: 10.1016/j.omto.2019.05.001. eCollection 2019 Sep 27.
11 Comparative genomic hybridization in glioma: a meta-analysis of 509 cases.Cancer Genet Cytogenet. 2002 Jun;135(2):147-59. doi: 10.1016/s0165-4608(01)00650-1.
12 Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect.Cell Commun Signal. 2019 Apr 16;17(1):36. doi: 10.1186/s12964-019-0348-0.
13 LncRNA SNHG7 promotes the proliferation of esophageal cancer cells and inhibits its apoptosis.Eur Rev Med Pharmacol Sci. 2018 May;22(9):2653-2661. doi: 10.26355/eurrev_201805_14961.
14 Major role for a 3p21 region and lack of involvement of the t(3;8) breakpoint region in the development of renal cell carcinoma suggested by loss of heterozygosity analysis.Genes Chromosomes Cancer. 1996 Jan;15(1):64-72. doi: 10.1002/(SICI)1098-2264(199601)15:1<64::AID-GCC9>3.0.CO;2-2.
15 Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15.Cell Death Dis. 2017 Mar 9;8(3):e2665. doi: 10.1038/cddis.2017.83.
16 Inhibition of PC4 radiosensitizes non-small cell lung cancer by transcriptionally suppressing XLF.Cancer Med. 2018 Apr;7(4):1326-1337. doi: 10.1002/cam4.1332. Epub 2018 Mar 9.
17 Frequent and variable abnormalities in p14 tumor suppressor gene in glioma cell lines.Brain Tumor Pathol. 2008;25(1):9-17. doi: 10.1007/s10014-007-0226-0. Epub 2008 Apr 16.
18 Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma.Cancer. 2004 Jul 1;101(1):125-32. doi: 10.1002/cncr.20323.
19 Promoter hypermethylation of p14 (ARF) , RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection.Tumour Biol. 2014 Mar;35(3):2795-802. doi: 10.1007/s13277-013-1372-0. Epub 2013 Nov 20.
20 Hepatitis C virus Core overcomes all-trans retinoic acid-induced apoptosis in human hepatoma cells by inhibiting p14 expression via DNA methylation.Oncotarget. 2017 Aug 18;8(49):85584-85598. doi: 10.18632/oncotarget.20337. eCollection 2017 Oct 17.
21 Depletion of histone demethylase KDM5B inhibits cell proliferation of hepatocellular carcinoma by regulation of cell cycle checkpoint proteins p15 and p27.J Exp Clin Cancer Res. 2016 Feb 25;35:37. doi: 10.1186/s13046-016-0311-5.
22 Regulation of DNA methylation and tumor suppression gene expression by miR-29b in leukemia patients and related mechanisms.Eur Rev Med Pharmacol Sci. 2018 Jan;22(1):158-165. doi: 10.26355/eurrev_201801_14113.
23 Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer.Int J Cancer. 2003 Oct 10;106(6):913-8. doi: 10.1002/ijc.11322.
24 Prognostic impact of p15 gene aberrations in acute leukemia.Leuk Lymphoma. 2017 Feb;58(2):257-265. doi: 10.1080/10428194.2016.1201574. Epub 2016 Jul 12.
25 Hypermethylation of P15, P16, and E-cadherin genes in ovarian cancer.Toxicol Ind Health. 2015 Oct;31(10):924-30. doi: 10.1177/0748233713484657. Epub 2013 Apr 9.
26 Blind SELEX Approach Identifies RNA Aptamers That Regulate EMT and Inhibit Metastasis.Mol Cancer Res. 2017 Jul;15(7):811-820. doi: 10.1158/1541-7786.MCR-16-0462. Epub 2017 Apr 10.
27 Aberrant promoter methylation of p15 (INKb) and p16 (INKa) genes may contribute to the pathogenesis of multiple myeloma: a meta-analysis.Tumour Biol. 2014 Sep;35(9):9035-43. doi: 10.1007/s13277-014-2054-2. Epub 2014 Jun 8.
28 CpG island methylation patterns in chronic lymphocytic leukemia.Leuk Lymphoma. 2009 Mar;50(3):419-26. doi: 10.1080/10428190902756594.
29 Frequency of genetic and epigenetic alterations of p14ARF and p16INK4A in head and neck cancer in a Hungarian population.Pathol Oncol Res. 2014 Oct;20(4):923-9. doi: 10.1007/s12253-014-9775-9. Epub 2014 Apr 9.
30 Frequent methylation silencing of p15(INK4b) (MTS2) and p16(INK4a) (MTS1) in B-cell and T-cell lymphomas.Blood. 1999 Sep 1;94(5):1773-81.
31 LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57.J Cell Physiol. 2019 Apr;234(4):5163-5174. doi: 10.1002/jcp.27320. Epub 2018 Sep 6.
32 p15(Ink4b) Loss of Expression by Promoter Hypermethylation Adds to Leukemogenesis and Confers a Poor Prognosis in Acute Promyelocytic Leukemia Patients.Cancer Res Treat. 2017 Jul;49(3):790-797. doi: 10.4143/crt.2016.108. Epub 2016 Dec 5.
33 Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and sezary syndrome.J Invest Dermatol. 2002 Mar;118(3):493-9. doi: 10.1046/j.0022-202x.2001.01682.x.
34 Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival.Clin Cancer Res. 2005 Apr 15;11(8):2991-7. doi: 10.1158/1078-0432.CCR-04-1731.
35 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
36 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro. Eur J Nutr. 2005 Mar;44(3):143-56. doi: 10.1007/s00394-004-0503-1. Epub 2004 Apr 30.
40 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
41 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
42 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
43 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
44 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
45 Proteomic analysis of anti-cancer effects by paclitaxel treatment in cervical cancer cells. Gynecol Oncol. 2005 Jul;98(1):45-53. doi: 10.1016/j.ygyno.2005.04.010.
46 Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Perspect. 2003 May;111(6):825-35.
47 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
48 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
49 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
50 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
51 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.
52 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.