General Information of Drug Off-Target (DOT) (ID: OTOVXARF)

DOT Name E3 ubiquitin-protein ligase Mdm2 (MDM2)
Synonyms EC 2.3.2.27; Double minute 2 protein; Hdm2; Oncoprotein Mdm2; RING-type E3 ubiquitin transferase Mdm2; p53-binding protein Mdm2
Gene Name MDM2
Related Disease
Lessel-kubisch syndrome ( )
UniProt ID
MDM2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1RV1 ; 1T4E ; 1T4F ; 1YCR ; 1Z1M ; 2AXI ; 2C6A ; 2C6B ; 2F1Y ; 2FOP ; 2GV2 ; 2HDP ; 2LZG ; 2M86 ; 2MPS ; 2RUH ; 2VJE ; 2VJF ; 3EQS ; 3G03 ; 3IUX ; 3IWY ; 3JZK ; 3JZR ; 3JZS ; 3LBK ; 3LBL ; 3LNJ ; 3LNZ ; 3MQS ; 3TJ2 ; 3TPX ; 3TU1 ; 3V3B ; 3VBG ; 3VZV ; 3W69 ; 4DIJ ; 4ERE ; 4ERF ; 4HBM ; 4HFZ ; 4HG7 ; 4JV7 ; 4JV9 ; 4JVE ; 4JVR ; 4JWR ; 4MDN ; 4MDQ ; 4OAS ; 4OBA ; 4OCC ; 4ODE ; 4ODF ; 4OGN ; 4OGT ; 4OGV ; 4OQ3 ; 4QO4 ; 4QOC ; 4UD7 ; 4UE1 ; 4UMN ; 4WT2 ; 4XXB ; 4ZFI ; 4ZGK ; 4ZYC ; 4ZYF ; 4ZYI ; 5AFG ; 5C5A ; 5HMH ; 5HMI ; 5HMK ; 5J7F ; 5J7G ; 5LAV ; 5LAW ; 5LAY ; 5LAZ ; 5LN2 ; 5MNJ ; 5OAI ; 5OC8 ; 5SWK ; 5TRF ; 5UMM ; 5VK0 ; 5WTS ; 5XXK ; 5Z02 ; 5ZXF ; 6AAW ; 6GGN ; 6H22 ; 6HFA ; 6I29 ; 6I3S ; 6IM9 ; 6KZU ; 6Q96 ; 6Q9H ; 6Q9L ; 6Q9O ; 6SQO ; 6T2D ; 6T2E ; 6T2F ; 6Y4Q ; 6YR6 ; 7AD0 ; 7AI0 ; 7AI1 ; 7AYE ; 7BIR ; 7BIT ; 7BIV ; 7BJ0 ; 7BJ6 ; 7BMG ; 7KJM ; 7NA1 ; 7NA2 ; 7NA3 ; 7NA4 ; 7NUS ; 7QDQ ; 8AEU ; 8BGU ; 8EI9 ; 8EIA ; 8EIB ; 8EIC ; 8F0Z ; 8F10 ; 8F12 ; 8F13
EC Number
2.3.2.27
Pfam ID
PF02201 ; PF13920 ; PF00641
Sequence
MCNTNMSVPTDGAVTTSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLGQY
IMTKRLYDEKQQHIVYCSNDLLGDLFGVPSFSVKEHRKIYTMIYRNLVVVNQQESSDSGT
SVSENRCHLEGGSDQKDLVQELQEEKPSSSHLVSRPSTSSRRRAISETEENSDELSGERQ
RKRHKSDSISLSFDESLALCVIREICCERSSSSESTGTPSNPDLDAGVSEHSGDWLDQDS
VSDQFSVEFEVESLDSEDYSLSEEGQELSDEDDEVYQVTVYQAGESDTDSFEEDPEISLA
DYWKCTSCNEMNPPLPSHCNRCWALRENWLPEDKGKDKGEISEKAKLENSTQAEEGFDVP
DCKKTIVNDSRESCVEENDDKITQASQSQESEDYSQPSTSSSIIYSSQEDVKEFEREETQ
DKEESVESSLPLNAIEPCVICQGRPKNGCIVHGKTGHLMACFTCAKKLKKRNKPCPVCRQ
PIQMIVLTYFP
Function
E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation. Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells. Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis. Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis. Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis.
Tissue Specificity Ubiquitous. Isoform Mdm2-A, isoform Mdm2-B, isoform Mdm2-C, isoform Mdm2-D, isoform Mdm2-E, isoform Mdm2-F and isoform Mdm2-G are observed in a range of cancers but absent in normal tissues.
KEGG Pathway
Endocrine resistance (hsa01522 )
Platinum drug resistance (hsa01524 )
FoxO sig.ling pathway (hsa04068 )
Cell cycle (hsa04110 )
p53 sig.ling pathway (hsa04115 )
Ubiquitin mediated proteolysis (hsa04120 )
Endocytosis (hsa04144 )
PI3K-Akt sig.ling pathway (hsa04151 )
Cellular senescence (hsa04218 )
C-type lectin receptor sig.ling pathway (hsa04625 )
Thyroid hormone sig.ling pathway (hsa04919 )
Shigellosis (hsa05131 )
Human cytomegalovirus infection (hsa05163 )
Human papillomavirus infection (hsa05165 )
Epstein-Barr virus infection (hsa05169 )
Pathways in cancer (hsa05200 )
Transcriptio.l misregulation in cancer (hsa05202 )
Viral carcinogenesis (hsa05203 )
Proteoglycans in cancer (hsa05205 )
MicroR.s in cancer (hsa05206 )
Glioma (hsa05214 )
Prostate cancer (hsa05215 )
Melanoma (hsa05218 )
Bladder cancer (hsa05219 )
Chronic myeloid leukemia (hsa05220 )
Reactome Pathway
Oxidative Stress Induced Senescence (R-HSA-2559580 )
Oncogene Induced Senescence (R-HSA-2559585 )
SUMOylation of transcription factors (R-HSA-3232118 )
SUMOylation of ubiquitinylation proteins (R-HSA-3232142 )
Trafficking of AMPA receptors (R-HSA-399719 )
Constitutive Signaling by AKT1 E17K in Cancer (R-HSA-5674400 )
Ub-specific processing proteases (R-HSA-5689880 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Regulation of TP53 Degradation (R-HSA-6804757 )
Regulation of TP53 Activity through Methylation (R-HSA-6804760 )
Stabilization of p53 (R-HSA-69541 )
Regulation of RUNX3 expression and activity (R-HSA-8941858 )
NPAS4 regulates expression of target genes (R-HSA-9768919 )
AKT phosphorylates targets in the cytosol (R-HSA-198323 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Lessel-kubisch syndrome DISPUB7O Limited Unknown [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved E3 ubiquitin-protein ligase Mdm2 (MDM2) decreases the response to substance of Paclitaxel. [81]
Mitoxantrone DMM39BF Approved E3 ubiquitin-protein ligase Mdm2 (MDM2) decreases the response to substance of Mitoxantrone. [82]
Amsacrine DMZKYIV Approved E3 ubiquitin-protein ligase Mdm2 (MDM2) decreases the response to substance of Amsacrine. [82]
Ellipticine DMHPYSM Investigative E3 ubiquitin-protein ligase Mdm2 (MDM2) decreases the response to substance of Ellipticine. [82]
10-hydroxycamptothecin DM9WLN4 Investigative E3 ubiquitin-protein ligase Mdm2 (MDM2) affects the response to substance of 10-hydroxycamptothecin. [81]
------------------------------------------------------------------------------------
78 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [7]
Quercetin DM3NC4M Approved Quercetin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [11]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [13]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [14]
Decitabine DMQL8XJ Approved Decitabine affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [15]
Menadione DMSJDTY Approved Menadione decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [17]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [18]
Folic acid DMEMBJC Approved Folic acid affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [19]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [20]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [21]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [23]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [24]
Aspirin DM672AH Approved Aspirin decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [25]
Etoposide DMNH3PG Approved Etoposide increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [26]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [27]
Mitomycin DMH0ZJE Approved Mitomycin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [28]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [7]
Azacitidine DMTA5OE Approved Azacitidine increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [29]
Cidofovir DMA13GD Approved Cidofovir affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [24]
Gemcitabine DMSE3I7 Approved Gemcitabine decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [31]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [32]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [24]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [33]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [34]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [34]
Hydroxyurea DMOQVU9 Approved Hydroxyurea increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [35]
Sorafenib DMS8IFC Approved Sorafenib increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [36]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [24]
Docetaxel DMDI269 Approved Docetaxel increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [37]
Cantharidin DMBP5N3 Approved Cantharidin decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [38]
Chlorambucil DMRKE63 Approved Chlorambucil increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [39]
Nicotinamide DMUPE07 Approved Nicotinamide increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [40]
Amifostine DM5FL14 Approved Amifostine decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [41]
Flucytosine DM13VTW Approved Flucytosine increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [42]
Ganciclovir DM1MBYQ Approved Ganciclovir increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [42]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [40]
Curcumin DMQPH29 Phase 3 Curcumin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [36]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [43]
Camptothecin DM6CHNJ Phase 3 Camptothecin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [44]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [45]
Triptolide DMCMDVR Phase 3 Triptolide decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [46]
Selinexor DMBD4K3 Phase 3 Selinexor increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [47]
Thymoquinone DMVDTR2 Phase 2/3 Thymoquinone decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [48]
Flavopiridol DMKSUOI Phase 2 Flavopiridol decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [50]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [52]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [53]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [54]
LY294002 DMY1AFS Phase 1 LY294002 increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [56]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [57]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [59]
PJ34 DMXO6YH Preclinical PJ34 increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [60]
IC261 DMXB95R Preclinical IC261 affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [61]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [62]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [63]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [64]
Coumarin DM0N8ZM Investigative Coumarin decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [65]
Deguelin DMXT7WG Investigative Deguelin increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [66]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [67]
Paraquat DMR8O3X Investigative Paraquat increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [68]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [69]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [70]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [71]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [72]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [73]
Rapamycin Immunosuppressant Drug DM678IB Investigative Rapamycin Immunosuppressant Drug decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [74]
CATECHIN DMY38SB Investigative CATECHIN decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [75]
Linalool DMGZQ5P Investigative Linalool increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [76]
PD98059 DMZC90M Investigative PD98059 decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [77]
Purvalanol A DMNQ7TM Investigative Purvalanol A decreases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [79]
ODQ DMSAJO8 Investigative ODQ increases the expression of E3 ubiquitin-protein ligase Mdm2 (MDM2). [80]
------------------------------------------------------------------------------------
⏷ Show the Full List of 78 Drug(s)
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [8]
Phenobarbital DMXZOCG Approved Phenobarbital increases the phosphorylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [16]
Simvastatin DM30SGU Approved Simvastatin increases the phosphorylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [30]
PX-866 DMYISJK Phase 2 PX-866 decreases the phosphorylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [51]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [55]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [58]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
3 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Bortezomib DMNO38U Approved Bortezomib increases the cleavage of E3 ubiquitin-protein ligase Mdm2 (MDM2). [22]
Tanespimycin DMNLQHK Phase 2 Tanespimycin increases the degradation of E3 ubiquitin-protein ligase Mdm2 (MDM2). [49]
PALMATINE DMJCOKV Investigative PALMATINE affects the binding of E3 ubiquitin-protein ligase Mdm2 (MDM2). [78]
------------------------------------------------------------------------------------

References

1 Dysfunction of the MDM2/p53 axis is linked to premature aging. J Clin Invest. 2017 Oct 2;127(10):3598-3608. doi: 10.1172/JCI92171. Epub 2017 Aug 28.
2 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget. 2015 Sep 22;6(28):25843-55. doi: 10.18632/oncotarget.4584.
6 Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis. 2014 Jan;29(1):17-26.
7 Detection of MDM2 alterations in cultured human hepatocytes treated with 17beta-estradiol or 17alpha-ethinylestradiol. Anticancer Res. 2002 May-Jun;22(3):1545-51.
8 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
11 In vitro antioxidant and antigenotoxic potentials of 3,5-O-di-galloylquinic acid extracted from Myrtus communis leaves and modulation of cell gene expression by H2O2. J Appl Toxicol. 2012 May;32(5):333-41.
12 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
13 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
14 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
15 Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006 Dec 1;66(23):11187-93. doi: 10.1158/0008-5472.CAN-06-1274.
16 Non-dioxin-like-PCBs phosphorylate Mdm2 at Ser166 and attenuate the p53 response in HepG2 cells. Chem Biol Interact. 2009 Dec 10;182(2-3):191-8. doi: 10.1016/j.cbi.2009.09.004. Epub 2009 Sep 12.
17 Modulation of notch signaling pathway to prevent H2O2/menadione-induced SK-N-MC cells death by EUK134. Cell Mol Neurobiol. 2014 Oct;34(7):1037-45. doi: 10.1007/s10571-014-0079-0. Epub 2014 Jul 9.
18 Regulation of p53 stability and function in HCT116 colon cancer cells. J Biol Chem. 2004 Feb 27;279(9):7598-605. doi: 10.1074/jbc.M311732200. Epub 2003 Dec 9.
19 Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells. Carcinogenesis. 2006 May;27(5):916-24. doi: 10.1093/carcin/bgi312. Epub 2005 Dec 16.
20 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
21 Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells. Front Physiol. 2016 Nov 24;7:559. doi: 10.3389/fphys.2016.00559. eCollection 2016.
22 Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 2003 Feb 15;101(4):1530-4. doi: 10.1182/blood-2002-08-2543. Epub 2002 Sep 26.
23 Differently expressed long noncoding RNAs and mRNAs in TK6 cells exposed to low dose hydroquinone. Oncotarget. 2017 Oct 4;8(56):95554-95567. doi: 10.18632/oncotarget.21481. eCollection 2017 Nov 10.
24 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
25 Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chem Biol Interact. 2010 Jul 30;186(2):127-34. doi: 10.1016/j.cbi.2010.04.027. Epub 2010 May 21.
26 Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells. Cancer Cell Int. 2005 Aug 24;5:28. doi: 10.1186/1475-2867-5-28.
27 In vitro and in vivo irinotecan-induced changes in expression profiles of cell cycle and apoptosis-associated genes in acute myeloid leukemia cells. Mol Cancer Ther. 2005 Jun;4(6):885-900.
28 Mdm2 as a sensitive and mechanistically informative marker for genotoxicity induced by benzo[a]pyrene and dibenzo[a,l]pyrene. Toxicol Sci. 2008 Apr;102(2):232-40. doi: 10.1093/toxsci/kfm305. Epub 2007 Dec 20.
29 The effect of DNA methylation inhibitor 5-Aza-2'-deoxycytidine on human endometrial stromal cells. Hum Reprod. 2010 Nov;25(11):2859-69.
30 HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage. FASEB J. 2005 Mar;19(3):476-8. doi: 10.1096/fj.04-2745fje. Epub 2004 Dec 29.
31 A fine-needle aspirate-based vulnerability assay identifies polo-like kinase 1 as a mediator of gemcitabine resistance in pancreatic cancer. Mol Cancer Ther. 2010 Feb;9(2):311-8. doi: 10.1158/1535-7163.MCT-09-0693. Epub 2010 Jan 26.
32 Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line. Toxicol Appl Pharmacol. 2006 Oct 1;216(1):89-97. doi: 10.1016/j.taap.2006.04.015. Epub 2006 May 19.
33 Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. Carcinogenesis. 2009 Aug;30(8):1320-9. doi: 10.1093/carcin/bgp138. Epub 2009 Jun 5.
34 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
35 Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment. Mutat Res. 2008 Oct 30;656(1-2):1-7.
36 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
37 Induction of tubulin by docetaxel is associated with p53 status in human non small cell lung cancer cell lines. Int J Cancer. 2006 Jan 15;118(2):317-25. doi: 10.1002/ijc.21372.
38 Cantharidin suppresses gastric cancer cell migration/invasion by inhibiting the PI3K/Akt signaling pathway via CCAT1. Chem Biol Interact. 2020 Feb 1;317:108939. doi: 10.1016/j.cbi.2020.108939. Epub 2020 Jan 13.
39 Differential gene expression induction by TRAIL in B chronic lymphocytic leukemia (B-CLL) cells showing high versus low levels of Zap-70. J Cell Physiol. 2007 Oct;213(1):229-36. doi: 10.1002/jcp.21116.
40 SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol. 2007 Jan;210(1):161-6. doi: 10.1002/jcp.20831.
41 Amifostine impairs p53-mediated apoptosis of human myeloid leukemia cells. Mol Cancer Ther. 2003 Sep;2(9):893-900.
42 Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene. 2005 Feb 10;24(7):1231-43. doi: 10.1038/sj.onc.1208290.
43 4-HPR modulates gene expression in ovarian cells. Int J Cancer. 2006 Sep 1;119(5):1005-13. doi: 10.1002/ijc.21797.
44 Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry. 2007 Jul 3;46(26):7765-80. doi: 10.1021/bi700425y. Epub 2007 Jun 8.
45 Atorvastatin induces MicroRNA-145 expression in HEPG2 cells via regulation of the PI3K/AKT signalling pathway. Chem Biol Interact. 2018 May 1;287:32-40. doi: 10.1016/j.cbi.2018.04.005. Epub 2018 Apr 6.
46 Variable p53/Nrf2 crosstalk contributes to triptolide-induced hepatotoxic process. Toxicol Lett. 2023 Apr 15;379:67-75. doi: 10.1016/j.toxlet.2023.03.011. Epub 2023 Mar 28.
47 The synergy of the XPO1 inhibitors combined with the BET inhibitor INCB057643 in high-grade B-cell lymphoma via downregulation of MYC expression. Sci Rep. 2023 Oct 29;13(1):18554. doi: 10.1038/s41598-023-45721-z.
48 Thymoquinone induces apoptosis of human epidermoid carcinoma A431?cells through ROS-mediated suppression of STAT3. Chem Biol Interact. 2019 Oct 1;312:108799. doi: 10.1016/j.cbi.2019.108799. Epub 2019 Aug 18.
49 The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp Hematol. 2006 Dec;34(12):1670-9. doi: 10.1016/j.exphem.2006.07.002.
50 Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol Cancer Ther. 2003 Feb;2(2):139-50.
51 Down-regulation of hTERT and Cyclin D1 transcription via PI3K/Akt and TGF- pathways in MCF-7 Cancer cells with PX-866 and Raloxifene. Exp Cell Res. 2016 May 15;344(1):95-102. doi: 10.1016/j.yexcr.2016.03.022. Epub 2016 Mar 23.
52 Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells. Food Chem Toxicol. 2019 Feb;124:349-358.
53 Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19408-13. doi: 10.1073/pnas.1216363109. Epub 2012 Nov 5.
54 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
55 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
56 Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol. 2006 Feb;132(4):503-11. doi: 10.1111/j.1365-2141.2005.05881.x.
57 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
58 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
59 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
60 Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells. J Hematol Oncol. 2015 Oct 23;8:117. doi: 10.1186/s13045-015-0217-2.
61 Inhibition of casein kinase I delta alters mitotic spindle formation and induces apoptosis in trophoblast cells. Oncogene. 2005 Dec 1;24(54):7964-75. doi: 10.1038/sj.onc.1208941.
62 Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor . Toxicol Appl Pharmacol. 2020 Jul 15;399:115030. doi: 10.1016/j.taap.2020.115030. Epub 2020 May 6.
63 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
64 Identification of formaldehyde-responsive genes by suppression subtractive hybridization. Toxicology. 2008 Jan 14;243(1-2):224-35.
65 A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol. 2020 Oct;34(10):e22553. doi: 10.1002/jbt.22553. Epub 2020 Jun 24.
66 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
67 Probiotic Bacillus subtilis CW14 reduces disruption of the epithelial barrier and toxicity of ochratoxin A to Caco-2?cells. Food Chem Toxicol. 2019 Apr;126:25-33. doi: 10.1016/j.fct.2019.02.009. Epub 2019 Feb 11.
68 Cytotoxicity and gene array analysis of alveolar epithelial A549 cells exposed to paraquat. Chem Biol Interact. 2010 Dec 5;188(3):427-36.
69 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.
70 p53 activation by Ni(II) is a HIF-1 independent response causing caspases 9/3-mediated apoptosis in human lung cells. Toxicol Appl Pharmacol. 2013 Jun 15;269(3):233-9. doi: 10.1016/j.taap.2013.03.023. Epub 2013 Apr 6.
71 A mechanistic basis for the role of cycle arrest in the genetic toxicology of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Toxicol Sci. 2005 Apr;84(2):335-43. doi: 10.1093/toxsci/kfi075. Epub 2005 Jan 5.
72 The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009 Jan 15;46(2):220-31.
73 Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549?cells. Environ Pollut. 2019 Jul;250:58-67. doi: 10.1016/j.envpol.2019.03.109. Epub 2019 Apr 4.
74 Rapamycin increases the p53/MDM2 protein ratio and p53-dependent apoptosis by translational inhibition of mdm2 in cancer cells. Cancer Lett. 2009 Dec 28;286(2):250-9. doi: 10.1016/j.canlet.2009.05.031. Epub 2009 Jun 26.
75 Cytotoxicity and apoptosis induction in human breast adenocarcinoma MCF-7 cells by (+)-cyanidan-3-ol. Exp Toxicol Pathol. 2013 Nov;65(7-8):1091-100. doi: 10.1016/j.etp.2013.04.005. Epub 2013 May 21.
76 Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010 Jan 31;268(1-2):19-24. doi: 10.1016/j.tox.2009.11.013. Epub 2009 Nov 14.
77 Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes. Oncogenesis. 2017 Aug 7;6(8):e370. doi: 10.1038/oncsis.2017.67.
78 Network pharmacology and molecular docking integrated strategy to investigate the pharmacological mechanism of palmatine in Alzheimer's disease. J Biochem Mol Toxicol. 2022 Nov;36(11):e23200. doi: 10.1002/jbt.23200. Epub 2022 Aug 23.
79 Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 2005 Jun 15;11(12):4580-8. doi: 10.1158/1078-0432.CCR-04-2624.
80 Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells. Oncogene. 2006 Apr 6;25(15):2203-12. doi: 10.1038/sj.onc.1209251.
81 Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11636-41. doi: 10.1073/pnas.1934692100. Epub 2003 Sep 16.
82 Effect of a single nucleotide polymorphism in the murine double minute 2 promoter (SNP309) on the sensitivity to topoisomerase II-targeting drugs. Cancer Res. 2007 Jun 15;67(12):5831-9. doi: 10.1158/0008-5472.CAN-06-4533.