General Information of Drug Combination (ID: DCNNGD5)

Drug Combination Name
Crizotinib Sirolimus
Indication
Disease Entry Status REF
Colon carcinoma Investigative [1]
Component Drugs Crizotinib   DM4F29C Sirolimus   DMGW1ID
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KM12
Zero Interaction Potency (ZIP) Score: 4.4
Bliss Independence Score: 2.97
Loewe Additivity Score: 3.33
LHighest Single Agent (HSA) Score: 6.49

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Crizotinib
Disease Entry ICD 11 Status REF
Non-small-cell lung cancer 2C25.Y Approved [2]
Crizotinib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Proto-oncogene c-Met (MET) TTNDSF4 MET_HUMAN Modulator [5]
ALK tyrosine kinase receptor (ALK) TTPMQSO ALK_HUMAN Modulator [5]
Proto-oncogene c-Ros (ROS1) TTSZ6Y3 ROS1_HUMAN Modulator [5]
HGF/Met signaling pathway (HGF/Met pathway) TTKA5LP NOUNIPROTAC Inhibitor [12]
------------------------------------------------------------------------------------
Crizotinib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [13]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [14]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [14]
------------------------------------------------------------------------------------
Crizotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [15]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [15]
------------------------------------------------------------------------------------
Crizotinib Interacts with 45 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [16]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [17]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Response To Substance [10]
ALK tyrosine kinase receptor (ALK) OTV3P4V8 ALK_HUMAN Decreases Response To Substance [18]
Prominin-1 (PROM1) OTBHV8NX PROM1_HUMAN Decreases Expression [9]
CD44 antigen (CD44) OT9TTJ41 CD44_HUMAN Decreases Expression [9]
Epithelial cell adhesion molecule (EPCAM) OTHBZK5X EPCAM_HUMAN Decreases Expression [9]
Cytidine deaminase (CDA) OT3HXP6N CDD_HUMAN Decreases Expression [9]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [19]
Acyl-CoA 6-desaturase (FADS2) OTUX531P FADS2_HUMAN Increases Expression [19]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases Expression [19]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [19]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Increases Expression [19]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [19]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [19]
Sterol regulatory element-binding protein 2 (SREBF2) OTBXUNPL SRBP2_HUMAN Increases Expression [19]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [19]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [19]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Decreases Activity [19]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Decreases Activity [19]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [10]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [10]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Decreases Secretion [20]
Lutropin subunit beta (LHB) OT5GBOVJ LSHB_HUMAN Decreases Secretion [20]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Activity [21]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [22]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [23]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [22]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [24]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [25]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [25]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [26]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [27]
Ras GTPase-activating-like protein IQGAP1 (IQGAP1) OTZRWTGA IQGA1_HUMAN Decreases Phosphorylation [28]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [27]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [10]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [29]
Echinoderm microtubule-associated protein-like 4 (EML4) OTJC45TA EMAL4_HUMAN Increases Mutagenesis [25]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [17]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [30]
Pro-epidermal growth factor (EGF) OTANRJ0L EGF_HUMAN Decreases Response To Substance [26]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [30]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Response To Substance [18]
Proheparin-binding EGF-like growth factor (HBEGF) OTLU00JS HBEGF_HUMAN Decreases Response To Substance [26]
Protransforming growth factor alpha (TGFA) OTPD1LL9 TGFA_HUMAN Decreases Response To Substance [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 DOT(s)
Indication(s) of Sirolimus
Disease Entry ICD 11 Status REF
Advanced cancer 2A00-2F9Z Approved [3]
Brainstem neoplasm N.A. Approved [3]
Graft-versus-host disease 4B24 Approved [3]
Intracranial meningioma N.A. Approved [3]
Lung cancer 2C25.0 Approved [3]
Lung lymphangioleiomyomatosis N.A. Approved [3]
Lymphangioleiomyomatosis CB07 Approved [4]
Mucosal melanoma N.A. Approved [3]
Multiple myeloma 2A83 Approved [5]
Multiple sclerosis 8A40 Approved [3]
Non-small-cell lung cancer 2C25.Y Approved [3]
Organ transplant rejection NE84 Approved [6]
Plasma cell myeloma 2A83.1 Approved [3]
Prostate cancer 2C82.0 Approved [3]
Salivary gland squamous cell carcinoma N.A. Approved [3]
Uveitis 9A96.Z Phase 3 [7]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 2 [8]
Dutch elm disease 8D64 Phase 1/2 [6]
Castration-resistant prostate carcinoma N.A. Investigative [3]
Neuroblastoma 2D11.2 Investigative [3]
Pancreatic acinar cell carcinoma N.A. Investigative [3]
Polycystic kidney disease GB8Y Investigative [3]
Rheumatoid arthritis FA20 Investigative [3]
Sirolimus Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Serine/threonine-protein kinase mTOR (mTOR) TTCJG29 MTOR_HUMAN Inhibitor [31]
PI3K/AKT/mTOR pathway (PAm pathway) TTGQUFK NOUNIPROTAC Inhibitor [32]
HUMAN mammalian target of rapamycin (mTOR) TT7HQAF MTOR_HUMAN Inhibitor [33]
------------------------------------------------------------------------------------
Sirolimus Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [34]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [35]
------------------------------------------------------------------------------------
Sirolimus Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [36]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [37]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [37]
------------------------------------------------------------------------------------
Sirolimus Interacts with 3 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Interleukin-2 (IL2) OTGI4NSA IL2_HUMAN Increases ADR [38]
Calcineurin subunit B type 1 (PPP3R1) OTGQNFJQ CANB1_HUMAN Increases ADR [38]
Nuclear receptor ROR-gamma (RORC) OTUBFRPC RORG_HUMAN Increases ADR [38]
------------------------------------------------------------------------------------

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Adenocarcinoma DCK02G8 DU-145 Investigative [39]
Adenocarcinoma DCKE0ZK NCIH23 Investigative [39]
Adenocarcinoma DCJJP8W HT29 Investigative [39]
Adult acute myeloid leukemia DCJZPSL HL-60(TB) Investigative [39]
Amelanotic melanoma DCXTOM0 MDA-MB-435 Investigative [39]
Anaplastic large cell lymphoma DC42DMP SR Investigative [39]
Astrocytoma DCG7EWN SNB-19 Investigative [39]
Childhood T acute lymphoblastic leukemia DCF3YRN CCRF-CEM Investigative [39]
Clear cell renal cell carcinoma DCXV5VW TK-10 Investigative [39]
Clear cell renal cell carcinoma DC3TCN8 A498 Investigative [39]
Glioma DC5KXCY SF-268 Investigative [39]
High grade ovarian serous adenocarcinoma DCV9LCM OVCAR-5 Investigative [39]
Lung adenocarcinoma DCZOFJR EKVX Investigative [39]
Malignant melanoma DC8U72H LOX IMVI Investigative [39]
Melanoma DCILAWY SK-MEL-2 Investigative [39]
Mixed endometrioid and clear cell carcinoma DC47MFH IGROV1 Investigative [39]
Papillary renal cell carcinoma DCQ01A4 ACHN Investigative [39]
Pleural epithelioid mesothelioma DCZ25C4 NCI-H226 Investigative [39]
Renal cell carcinoma DCTLRXZ SN12C Investigative [39]
Carcinoma DCFMS3T MCF7 Investigative [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 DrugCom(s)

References

1 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4903).
3 Sirolimus FDA Label
4 FDA Approved Drug Products from FDA Official Website. 2019. Application Number: (ANDA) 201578.
5 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
6 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6031).
7 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
8 ClinicalTrials.gov (NCT04341675) Sirolimus Treatment in Hospitalized Patients With COVID-19 Pneumonia. U.S. National Institutes of Health.
9 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
10 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.
11 Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012 Apr;24(4):852-8. doi: 10.1016/j.cellsig.2011.11.020. Epub 2011 Dec 8.
12 Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma.Drug Des Devel Ther. 2015 Aug 26;9:4897-907.
13 Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014 Mar 15;134(6):1484-94.
14 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
15 Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7.
16 Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos. 2013 Feb;41(2):343-52.
17 Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci. 2017 Jun 1;157(2):500-509. doi: 10.1093/toxsci/kfx063.
18 Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
19 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
20 Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 Nov 1;118(21):5302-9. doi: 10.1002/cncr.27450. Epub 2012 Apr 4.
21 Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63. doi: 10.1021/jm2007613. Epub 2011 Aug 18.
22 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
23 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
24 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
25 Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7535-40. doi: 10.1073/pnas.1019559108. Epub 2011 Apr 18.
26 Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012 Jul 1;18(13):3592-602. doi: 10.1158/1078-0432.CCR-11-2972. Epub 2012 May 2.
27 Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011 Dec;78(6):999-1005. doi: 10.1111/j.1747-0285.2011.01239.x. Epub 2011 Oct 31.
28 Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem. 2020 Dec 25;295(52):18105-18121. doi: 10.1074/jbc.RA120.015891. Epub 2020 Oct 21.
29 Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett. 2020 Feb 1;319:102-110. doi: 10.1016/j.toxlet.2019.11.007. Epub 2019 Nov 7.
30 Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012 Mar 1;18(5):1472-82. doi: 10.1158/1078-0432.CCR-11-2906. Epub 2012 Jan 10.
31 Knockouts model the 100 best-selling drugs--will they model the next 100 Nat Rev Drug Discov. 2003 Jan;2(1):38-51.
32 The genomic landscape of nasopharyngeal carcinoma.Nat Genet. 2014 Aug;46(8):866-71.
33 Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020 Mar 16;6:14.
34 Pharmacogenetics of tacrolimus and sirolimus in renal transplant patients: from retrospective analyses to prospective studies. Transplant Proc. 2007 Sep;39(7):2142-4.
35 Pharmacokinetic and pharmacodynamic interactions between the immunosuppressant sirolimus and the lipid-lowering drug ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2010 Jun;87(6):663-7.
36 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
37 Drug Interactions Flockhart Table
38 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
39 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.