General Information of Drug Off-Target (DOT) (ID: OTFII9KG)

DOT Name Fatty acid synthase (FASN)
Synonyms
EC 2.3.1.85; Type I fatty acid synthase) S-acetyltransferase (EC 2.3.1.38); S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl- synthase (EC 2.3.1.41); 3-oxoacyl- reductase (EC 1.1.1.100); 3-hydroxyacyl- dehydratase (EC 4.2.1.59); Enoyl- reductase (EC 1.3.1.39); Acyl- hydrolase (EC 3.1.2.14)]
Gene Name FASN
UniProt ID
FAS_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1XKT; 2CG5; 2JFD; 2JFK; 2PX6; 3HHD; 3TJM; 4PIV; 4W82; 4W9N; 4Z49; 5C37; 6NNA; 7MHD; 7MHE; 8EYI; 8EYK; 8G7X; 8GKC
EC Number
1.1.1.100; 1.3.1.39; 2.3.1.38; 2.3.1.39; 2.3.1.41; 2.3.1.85; 3.1.2.14; 4.2.1.59
Pfam ID
PF00698 ; PF00107 ; PF21149 ; PF16197 ; PF00109 ; PF02801 ; PF08659 ; PF08242 ; PF21089 ; PF00550 ; PF00975
Sequence
MEEVVIAGMSGKLPESENLQEFWDNLIGGVDMVTDDDRRWKAGLYGLPRRSGKLKDLSRF
DASFFGVHPKQAHTMDPQLRLLLEVTYEAIVDGGINPDSLRGTHTGVWVGVSGSETSEAL
SRDPETLVGYSMVGCQRAMMANRLSFFFDFRGPSIALDTACSSSLMALQNAYQAIHSGQC
PAAIVGGINVLLKPNTSVQFLRLGMLSPEGTCKAFDTAGNGYCRSEGVVAVLLTKKSLAR
RVYATILNAGTNTDGFKEQGVTFPSGDIQEQLIRSLYQSAGVAPESFEYIEAHGTGTKVG
DPQELNGITRALCATRQEPLLIGSTKSNMGHPEPASGLAALAKVLLSLEHGLWAPNLHFH
SPNPEIPALLDGRLQVVDQPLPVRGGNVGINSFGFGGSNVHIILRPNTQPPPAPAPHATL
PRLLRASGRTPEAVQKLLEQGLRHSQDLAFLSMLNDIAAVPATAMPFRGYAVLGGERGGP
EVQQVPAGERPLWFICSGMGTQWRGMGLSLMRLDRFRDSILRSDEAVKPFGLKVSQLLLS
TDESTFDDIVHSFVSLTAIQIGLIDLLSCMGLRPDGIVGHSLGEVACGYADGCLSQEEAV
LAAYWRGQCIKEAHLPPGAMAAVGLSWEECKQRCPPGVVPACHNSKDTVTISGPQAPVFE
FVEQLRKEGVFAKEVRTGGMAFHSYFMEAIAPPLLQELKKVIREPKPRSARWLSTSIPEA
QWHSSLARTSSAEYNVNNLVSPVLFQEALWHVPEHAVVLEIAPHALLQAVLKRGLKPSCT
IIPLMKKDHRDNLEFFLAGIGRLHLSGIDANPNALFPPVEFPAPRGTPLISPLIKWDHSL
AWDVPAAEDFPNGSGSPSAAIYNIDTSSESPDHYLVDHTLDGRVLFPATGYLSIVWKTLA
RALGLGVEQLPVVFEDVVLHQATILPKTGTVSLEVRLLEASRAFEVSENGNLVVSGKVYQ
WDDPDPRLFDHPESPTPNPTEPLFLAQAEVYKELRLRGYDYGPHFQGILEASLEGDSGRL
LWKDNWVSFMDTMLQMSILGSAKHGLYLPTRVTAIHIDPATHRQKLYTLQDKAQVADVVV
SRWLRVTVAGGVHISGLHTESAPRRQQEQQVPILEKFCFTPHTEEGCLSERAALQEELQL
CKGLVQALQTKVTQQGLKMVVPGLDGAQIPRDPSQQELPRLLSAACRLQLNGNLQLELAQ
VLAQERPKLPEDPLLSGLLDSPALKACLDTAVENMPSLKMKVVEVLAGHGHLYSRIPGLL
SPHPLLQLSYTATDRHPQALEAAQAELQQHDVAQGQWDPADPAPSALGSADLLVCNCAVA
ALGDPASALSNMVAALREGGFLLLHTLLRGHPLGDIVAFLTSTEPQYGQGILSQDAWESL
FSRVSLRLVGLKKSFYGSTLFLCRRPTPQDSPIFLPVDDTSFRWVESLKGILADEDSSRP
VWLKAINCATSGVVGLVNCLRREPGGNRLRCVLLSNLSSTSHVPEVDPGSAELQKVLQGD
LVMNVYRDGAWGAFRHFLLEEDKPEEPTAHAFVSTLTRGDLSSIRWVCSSLRHAQPTCPG
AQLCTVYYASLNFRDIMLATGKLSPDAIPGKWTSQDSLLGMEFSGRDASGKRVMGLVPAK
GLATSVLLSPDFLWDVPSNWTLEEAASVPVVYSTAYYALVVRGRVRPGETLLIHSGSGGV
GQAAIAIALSLGCRVFTTVGSAEKRAYLQARFPQLDSTSFANSRDTSFEQHVLWHTGGKG
VDLVLNSLAEEKLQASVRCLATHGRFLEIGKFDLSQNHPLGMAIFLKNVTFHGVLLDAFF
NESSADWREVWALVQAGIRDGVVRPLKCTVFHGAQVEDAFRYMAQGKHIGKVVVQVLAEE
PEAVLKGAKPKLMSAISKTFCPAHKSYIIAGGLGGFGLELAQWLIQRGVQKLVLTSRSGI
RTGYQAKQVRRWRRQGVQVQVSTSNISSLEGARGLIAEAAQLGPVGGVFNLAVVLRDGLL
ENQTPEFFQDVCKPKYSGTLNLDRVTREACPELDYFVVFSSVSCGRGNAGQSNYGFANSA
MERICEKRRHEGLPGLAVQWGAIGDVGILVETMSTNDTIVSGTLPQRMASCLEVLDLFLN
QPHMVLSSFVLAEKAAAYRDRDSQRDLVEAVAHILGIRDLAAVNLDSSLADLGLDSLMSV
EVRQTLERELNLVLSVREVRQLTLRKLQELSSKADEASELACPTPKEDGLAQQQTQLNLR
SLLVNPEGPTLMRLNSVQSSERPLFLVHPIEGSTTVFHSLASRLSIPTYGLQCTRAAPLD
SIHSLAAYYIDCIRQVQPEGPYRVAGYSYGACVAFEMCSQLQAQQSPAPTHNSLFLFDGS
PTYVLAYTQSYRAKLTPGCEAEAETEAICFFVQQFTDMEHNRVLEALLPLKGLEERVAAA
VDLIIKSHQGLDRQELSFAARSFYYKLRAAEQYTPKAKYHGNVMLLRAKTGGAYGEDLGA
DYNLSQVCDGKVSVHVIEGDHRTLLEGSGLESIISIIHSSLAEPRVSVREG
Function
Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain; (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication.
Tissue Specificity Ubiquitous. Prominent expression in brain, lung, liver and mammary gland.
KEGG Pathway
Fatty acid biosynthesis (hsa00061 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
AMPK sig.ling pathway (hsa04152 )
Insulin sig.ling pathway (hsa04910 )
Alcoholic liver disease (hsa04936 )
Reactome Pathway
Vitamin B5 (pantothenate) metabolism (R-HSA-199220 )
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
Fatty acyl-CoA biosynthesis (R-HSA-75105 )
NR1H2 & NR1H3 regulate gene expression linked to lipogenesis (R-HSA-9029558 )
ChREBP activates metabolic gene expression (R-HSA-163765 )
BioCyc Pathway
MetaCyc:HS09992-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Fatty acid synthase (FASN) decreases the response to substance of Mitoxantrone. [75]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Adenosine triphosphate DM79F6G Approved Fatty acid synthase (FASN) decreases the abundance of Adenosine triphosphate. [76]
------------------------------------------------------------------------------------
85 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fatty acid synthase (FASN). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fatty acid synthase (FASN). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Fatty acid synthase (FASN). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Fatty acid synthase (FASN). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Fatty acid synthase (FASN). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Fatty acid synthase (FASN). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Fatty acid synthase (FASN). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Fatty acid synthase (FASN). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Fatty acid synthase (FASN). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Fatty acid synthase (FASN). [10]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Fatty acid synthase (FASN). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Fatty acid synthase (FASN). [12]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Fatty acid synthase (FASN). [13]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Fatty acid synthase (FASN). [14]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Fatty acid synthase (FASN). [15]
Selenium DM25CGV Approved Selenium increases the expression of Fatty acid synthase (FASN). [16]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Fatty acid synthase (FASN). [17]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Fatty acid synthase (FASN). [3]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Fatty acid synthase (FASN). [18]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Fatty acid synthase (FASN). [19]
Ethanol DMDRQZU Approved Ethanol increases the expression of Fatty acid synthase (FASN). [20]
Etoposide DMNH3PG Approved Etoposide increases the expression of Fatty acid synthase (FASN). [5]
Paclitaxel DMLB81S Approved Paclitaxel decreases the expression of Fatty acid synthase (FASN). [21]
Clozapine DMFC71L Approved Clozapine increases the expression of Fatty acid synthase (FASN). [22]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Fatty acid synthase (FASN). [23]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Fatty acid synthase (FASN). [24]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Fatty acid synthase (FASN). [25]
Rifampicin DM5DSFZ Approved Rifampicin increases the expression of Fatty acid synthase (FASN). [26]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of Fatty acid synthase (FASN). [27]
Sulindac DM2QHZU Approved Sulindac increases the expression of Fatty acid synthase (FASN). [23]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of Fatty acid synthase (FASN). [3]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of Fatty acid synthase (FASN). [28]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial decreases the expression of Fatty acid synthase (FASN). [29]
Haloperidol DM96SE0 Approved Haloperidol increases the expression of Fatty acid synthase (FASN). [22]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium decreases the expression of Fatty acid synthase (FASN). [29]
Lindane DMB8CNL Approved Lindane increases the expression of Fatty acid synthase (FASN). [30]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid decreases the expression of Fatty acid synthase (FASN). [31]
Hydrocortisone DMGEMB7 Approved Hydrocortisone increases the expression of Fatty acid synthase (FASN). [32]
Lovastatin DM9OZWQ Approved Lovastatin increases the expression of Fatty acid synthase (FASN). [24]
Glucosamine DM4ZLFD Approved Glucosamine increases the expression of Fatty acid synthase (FASN). [33]
Orlistat DMRJSP8 Approved Orlistat decreases the activity of Fatty acid synthase (FASN). [34]
Crizotinib DM4F29C Approved Crizotinib increases the expression of Fatty acid synthase (FASN). [35]
Methimazole DM25FL8 Approved Methimazole decreases the expression of Fatty acid synthase (FASN). [36]
Mitotane DMU1GX0 Approved Mitotane decreases the expression of Fatty acid synthase (FASN). [37]
Nelfinavir mesylate DMFX6G8 Approved Nelfinavir mesylate decreases the expression of Fatty acid synthase (FASN). [38]
Teriflunomide DMQ2FKJ Approved Teriflunomide decreases the expression of Fatty acid synthase (FASN). [39]
Vitamin B3 DMQVRZH Approved Vitamin B3 decreases the expression of Fatty acid synthase (FASN). [40]
Norethindrone DMTY169 Approved Norethindrone increases the activity of Fatty acid synthase (FASN). [41]
OPC-34712 DMHG57U Approved OPC-34712 decreases the expression of Fatty acid synthase (FASN). [42]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Fatty acid synthase (FASN). [43]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Fatty acid synthase (FASN). [44]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the expression of Fatty acid synthase (FASN). [24]
Bardoxolone methyl DMODA2X Phase 3 Bardoxolone methyl decreases the expression of Fatty acid synthase (FASN). [45]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Fatty acid synthase (FASN). [46]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone affects the expression of Fatty acid synthase (FASN). [47]
Beta-caryophyllene DM7583A Phase 2 Beta-caryophyllene decreases the expression of Fatty acid synthase (FASN). [49]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Fatty acid synthase (FASN). [50]
LY294002 DMY1AFS Phase 1 LY294002 decreases the expression of Fatty acid synthase (FASN). [51]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Fatty acid synthase (FASN). [52]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Fatty acid synthase (FASN). [54]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Fatty acid synthase (FASN). [55]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Fatty acid synthase (FASN). [56]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Fatty acid synthase (FASN). [57]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Fatty acid synthase (FASN). [58]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Fatty acid synthase (FASN). [15]
Nickel chloride DMI12Y8 Investigative Nickel chloride decreases the expression of Fatty acid synthase (FASN). [59]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the expression of Fatty acid synthase (FASN). [60]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Fatty acid synthase (FASN). [61]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Fatty acid synthase (FASN). [62]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Fatty acid synthase (FASN). [63]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl increases the expression of Fatty acid synthase (FASN). [64]
Dibutyl phthalate DMEDGKO Investigative Dibutyl phthalate increases the expression of Fatty acid synthase (FASN). [65]
all-trans-4-oxo-retinoic acid DMM2R1N Investigative all-trans-4-oxo-retinoic acid increases the expression of Fatty acid synthase (FASN). [3]
Cordycepin DM72Y01 Investigative Cordycepin decreases the expression of Fatty acid synthase (FASN). [66]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Fatty acid synthase (FASN). [67]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Fatty acid synthase (FASN). [68]
GW-3965 DMG60ET Investigative GW-3965 increases the expression of Fatty acid synthase (FASN). [68]
T0901317 DMZQVDI Investigative T0901317 decreases the expression of Fatty acid synthase (FASN). [69]
CITCO DM0N634 Investigative CITCO decreases the expression of Fatty acid synthase (FASN). [39]
NMS-873 DMYKZ6U Investigative NMS-873 decreases the expression of Fatty acid synthase (FASN). [70]
BETULIN DMGQRON Investigative BETULIN decreases the expression of Fatty acid synthase (FASN). [71]
Ganoderic acid A DM42EVG Investigative Ganoderic acid A decreases the expression of Fatty acid synthase (FASN). [72]
PF-429242 DMB0OZ3 Investigative PF-429242 decreases the expression of Fatty acid synthase (FASN). [71]
paxilline DMPF2N1 Investigative paxilline increases the expression of Fatty acid synthase (FASN). [73]
Raffinose DMVHDOS Investigative Raffinose decreases the expression of Fatty acid synthase (FASN). [74]
------------------------------------------------------------------------------------
⏷ Show the Full List of 85 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Fatty acid synthase (FASN). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Fatty acid synthase (FASN). [53]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Fatty acid synthase (FASN). [48]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J Invest Dermatol. 2005 Jul;125(1):143-53.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 DNA topoisomerase IIalpha (TOP2A) inhibitors up-regulate fatty acid synthase gene expression in SK-Br3 breast cancer cells: in vitro evidence for a 'functional amplicon' involving FAS, Her-2/neu and TOP2A genes. Int J Mol Med. 2006 Dec;18(6):1081-7.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells. Exp Eye Res. 2009 Dec;89(6):995-1002. doi: 10.1016/j.exer.2009.08.011. Epub 2009 Sep 1.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
13 Inhibition of fatty acid synthase expression by 1alpha,25-dihydroxyvitamin D3 in prostate cancer cells. J Steroid Biochem Mol Biol. 2003 May;85(1):1-8. doi: 10.1016/s0960-0760(03)00142-0.
14 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
15 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
18 Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes. Chem Biol Interact. 2009 Apr 15;179(1):17-24.
19 Differential anti-proliferative actions of peroxisome proliferator-activated receptor-gamma agonists in MCF-7 breast cancer cells. Biochem Pharmacol. 2006 Aug 28;72(5):530-40. doi: 10.1016/j.bcp.2006.05.009. Epub 2006 Jun 27.
20 Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice. Toxicology. 2013 Dec 15;314(2-3):193-201. doi: 10.1016/j.tox.2013.09.009. Epub 2013 Oct 18.
21 Orlistat Displays Antitumor Activity and Enhances the Efficacy of Paclitaxel in Human Hepatoma Hep3B Cells. Chem Res Toxicol. 2019 Feb 18;32(2):255-264. doi: 10.1021/acs.chemrestox.8b00269. Epub 2019 Jan 22.
22 Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action? Pharmacogenomics J. 2005;5(5):298-304.
23 Drug-induced hepatic steatosis in absence of severe mitochondrial dysfunction in HepaRG cells: proof of multiple mechanism-based toxicity. Cell Biol Toxicol. 2021 Apr;37(2):151-175. doi: 10.1007/s10565-020-09537-1. Epub 2020 Jun 14.
24 Effect of atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and triacylglycerides in HepG2 cells. Biochem Pharmacol. 2001 Dec 1;62(11):1545-55. doi: 10.1016/s0006-2952(01)00790-0.
25 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
26 Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles. Arch Toxicol. 2018 Apr;92(4):1435-1451.
27 Adipocyte differentiation, mitochondrial gene expression and fat distribution: differences between zidovudine and tenofovir after 6 months. Antivir Ther. 2009;14(8):1089-100. doi: 10.3851/IMP1457.
28 Protein profile in neuroblastoma cells incubated with S- and R-enantiomers of ibuprofen by iTRAQ-coupled 2-D LC-MS/MS analysis: possible action of induced proteins on Alzheimer's disease. Proteomics. 2008 Apr;8(8):1595-607. doi: 10.1002/pmic.200700556.
29 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
30 Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease. Oncotarget. 2016 Jun 7;7(23):33689-702. doi: 10.18632/oncotarget.9399.
31 Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes. PLoS One. 2013 Dec 3;8(12):e82086. doi: 10.1371/journal.pone.0082086. eCollection 2013.
32 Prenatal caffeine exposure increases the susceptibility to non-alcoholic fatty liver disease in female offspring rats via activation of GR-C/EBP-SIRT1 pathway. Toxicology. 2019 Apr 1;417:23-34. doi: 10.1016/j.tox.2019.02.008. Epub 2019 Feb 15.
33 Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PLoS One. 2011;6(11):e26583. doi: 10.1371/journal.pone.0026583. Epub 2011 Nov 11.
34 Synthesis of novel beta-lactone inhibitors of fatty acid synthase. J Med Chem. 2008 Sep 11;51(17):5285-96. doi: 10.1021/jm800321h. Epub 2008 Aug 19.
35 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
36 Low-expressional IGF1 mediated methimazole-induced liver developmental toxicity in fetal mice. Toxicology. 2018 Sep 1;408:70-79. doi: 10.1016/j.tox.2018.07.004. Epub 2018 Jul 7.
37 Identification of novel agonists by high-throughput screening and molecular modelling of human constitutive androstane receptor isoform 3. Arch Toxicol. 2019 Aug;93(8):2247-2264. doi: 10.1007/s00204-019-02495-6. Epub 2019 Jul 16.
38 Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin Cancer Res. 2011 Apr 1;17(7):1796-806. doi: 10.1158/1078-0432.CCR-10-3216. Epub 2011 Feb 25.
39 Teriflunomide is an indirect human constitutive androstane receptor (CAR) activator interacting with epidermal growth factor (EGF) signaling. Front Pharmacol. 2018 Oct 11;9:993.
40 Effects of extended-release niacin on lipid profile and adipocyte biology in patients with impaired glucose tolerance. Atherosclerosis. 2009 Jul;205(1):207-13. doi: 10.1016/j.atherosclerosis.2008.11.026. Epub 2008 Dec 3.
41 The estrogenic activity of synthetic progestins used in oral contraceptives enhances fatty acid synthase-dependent breast cancer cell proliferation and survival. Int J Oncol. 2005 Jun;26(6):1507-15.
42 Brexpiprazole suppresses cell proliferation and de novo lipogenesis through AMPK/SREBP1 pathway in colorectal cancer. Environ Toxicol. 2023 Oct;38(10):2352-2360. doi: 10.1002/tox.23871. Epub 2023 Jun 22.
43 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
44 Differential regulation of proliferation, cell cycle control and gene expression in cultured human aortic and pulmonary artery endothelial cells by resveratrol. Int J Mol Med. 2010 Nov;26(5):743-9.
45 Fatty acid synthesis is a therapeutic target in human liposarcoma. Int J Oncol. 2010 May;36(5):1309-14. doi: 10.3892/ijo_00000616.
46 A high concentration of genistein down-regulates activin A, Smad3 and other TGF-beta pathway genes in human uterine leiomyoma cells. Exp Mol Med. 2012 Apr 30;44(4):281-92.
47 Hepatic cells derived from human skin progenitors show a typical phospholipidotic response upon exposure to amiodarone. Toxicol Lett. 2018 Mar 1;284:184-194. doi: 10.1016/j.toxlet.2017.11.014. Epub 2017 Dec 15.
48 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
49 -Caryophyllene attenuates palmitate-induced lipid accumulation through AMPK signaling by activating CB2 receptor in human HepG2 hepatocytes. Mol Nutr Food Res. 2016 Oct;60(10):2228-2242. doi: 10.1002/mnfr.201600197. Epub 2016 Jun 16.
50 Modulation of gene expression and DNA adduct formation in HepG2 cells by polycyclic aromatic hydrocarbons with different carcinogenic potencies. Carcinogenesis. 2006 Mar;27(3):646-55.
51 Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem Toxicol. 2018 Nov;121:326-335. doi: 10.1016/j.fct.2018.09.008. Epub 2018 Sep 8.
52 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
53 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
54 In vitro evaluation of the hepatic lipid accumulation of bisphenol analogs: A high-content screening assay. Toxicol In Vitro. 2020 Oct;68:104959. doi: 10.1016/j.tiv.2020.104959. Epub 2020 Aug 5.
55 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
56 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
57 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
58 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
59 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
60 Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Toxicol Appl Pharmacol. 2018 Dec 1;360:18-29.
61 SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem. 2008 Jul 18;283(29):20015-26. doi: 10.1074/jbc.M802187200. Epub 2008 May 14.
62 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
63 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
64 Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicol In Vitro. 2017 Apr;40:79-87. doi: 10.1016/j.tiv.2016.12.011. Epub 2016 Dec 20.
65 Effects of dibutyl phthalate on lipid metabolism in liver and hepatocytes based on PPAR/SREBP-1c/FAS/GPAT/AMPK signal pathway. Food Chem Toxicol. 2021 Mar;149:112029. doi: 10.1016/j.fct.2021.112029. Epub 2021 Jan 26.
66 [Cordycepin inhibits the proliferation and migration of human gastric cancer cells by suppressing lipid metabolism via AMPK and MAPK activation]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2022 Jun;38(6):513-521.
67 SIRT1/mTOR pathway-mediated autophagy dysregulation promotes Pb-induced hepatic lipid accumulation in HepG2 cells. Environ Toxicol. 2022 Mar;37(3):549-563. doi: 10.1002/tox.23420. Epub 2021 Nov 29.
68 System analysis of cross-talk between nuclear receptors reveals an opposite regulation of the cell cycle by LXR and FXR in human HepaRG liver cells. PLoS One. 2019 Aug 22;14(8):e0220894. doi: 10.1371/journal.pone.0220894. eCollection 2019.
69 Editor's Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol Sci. 2017 Sep 1;159(1):159-169. doi: 10.1093/toxsci/kfx121.
70 AAA-ATPase valosin-containing protein binds the transcription factor SREBP1 and promotes its proteolytic activation by rhomboid protease RHBDL4. J Biol Chem. 2022 Jun;298(6):101936. doi: 10.1016/j.jbc.2022.101936. Epub 2022 Apr 14.
71 Fatostatin inhibits cancer cell proliferation by affecting mitotic microtubule spindle assembly and cell division. J Biol Chem. 2016 Aug 12;291(33):17001-8.
72 Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact. 2018 Jun 25;290:77-87.
73 Combinations of LXR and RXR agonists induce triglyceride accumulation in human HepaRG cells in a synergistic manner. Arch Toxicol. 2020 Apr;94(4):1303-1320. doi: 10.1007/s00204-020-02685-7. Epub 2020 Mar 2.
74 Raffinose from Costus speciosus attenuates lipid synthesis through modulation of PPARs/SREBP1c and improves insulin sensitivity through PI3K/AKT. Chem Biol Interact. 2018 Mar 25;284:80-89. doi: 10.1016/j.cbi.2018.02.011. Epub 2018 Feb 16.
75 A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther. 2008 Feb;7(2):263-70. doi: 10.1158/1535-7163.MCT-07-0445.
76 Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice. J Biol Chem. 2016 Feb 5;291(6):2583-600. doi: 10.1074/jbc.M115.702688. Epub 2015 Dec 15.