General Information of Drug Combination (ID: DCO6T67)

Drug Combination Name
Crizotinib Lapatinib
Indication
Disease Entry Status REF
Astrocytoma Investigative [1]
Component Drugs Crizotinib   DM4F29C Lapatinib   DM3BH1Y
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: U251
Zero Interaction Potency (ZIP) Score: 4.23
Bliss Independence Score: 4.92
Loewe Additivity Score: 4.89
LHighest Single Agent (HSA) Score: 4.56

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Crizotinib
Disease Entry ICD 11 Status REF
Non-small-cell lung cancer 2C25.Y Approved [2]
Crizotinib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Proto-oncogene c-Met (MET) TTNDSF4 MET_HUMAN Modulator [8]
ALK tyrosine kinase receptor (ALK) TTPMQSO ALK_HUMAN Modulator [8]
Proto-oncogene c-Ros (ROS1) TTSZ6Y3 ROS1_HUMAN Modulator [8]
HGF/Met signaling pathway (HGF/Met pathway) TTKA5LP NOUNIPROTAC Inhibitor [9]
------------------------------------------------------------------------------------
Crizotinib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [10]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [11]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [11]
------------------------------------------------------------------------------------
Crizotinib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [12]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [12]
------------------------------------------------------------------------------------
Crizotinib Interacts with 45 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [13]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Decreases Activity [14]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Response To Substance [6]
ALK tyrosine kinase receptor (ALK) OTV3P4V8 ALK_HUMAN Decreases Response To Substance [15]
Prominin-1 (PROM1) OTBHV8NX PROM1_HUMAN Decreases Expression [5]
CD44 antigen (CD44) OT9TTJ41 CD44_HUMAN Decreases Expression [5]
Epithelial cell adhesion molecule (EPCAM) OTHBZK5X EPCAM_HUMAN Decreases Expression [5]
Cytidine deaminase (CDA) OT3HXP6N CDD_HUMAN Decreases Expression [5]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [16]
Acyl-CoA 6-desaturase (FADS2) OTUX531P FADS2_HUMAN Increases Expression [16]
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) OTRT3F3U HMDH_HUMAN Increases Expression [16]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [16]
Fatty acid synthase (FASN) OTFII9KG FAS_HUMAN Increases Expression [16]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [16]
Hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1) OTCO26FV HMCS1_HUMAN Increases Expression [16]
Sterol regulatory element-binding protein 2 (SREBF2) OTBXUNPL SRBP2_HUMAN Increases Expression [16]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [16]
Acetyl-CoA carboxylase 1 (ACACA) OT5CQPZY ACACA_HUMAN Increases Phosphorylation [16]
Voltage-dependent L-type calcium channel subunit alpha-1C (CACNA1C) OT6KFNMS CAC1C_HUMAN Decreases Activity [16]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Decreases Activity [16]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [6]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [6]
Follitropin subunit beta (FSHB) OTGLS283 FSHB_HUMAN Decreases Secretion [17]
Lutropin subunit beta (LHB) OT5GBOVJ LSHB_HUMAN Decreases Secretion [17]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Activity [18]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [19]
Tissue factor (F3) OT3MSU3B TF_HUMAN Increases Expression [20]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [19]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [21]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [22]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [22]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [23]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [24]
Ras GTPase-activating-like protein IQGAP1 (IQGAP1) OTZRWTGA IQGA1_HUMAN Decreases Phosphorylation [25]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [24]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [6]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [26]
Echinoderm microtubule-associated protein-like 4 (EML4) OTJC45TA EMAL4_HUMAN Increases Mutagenesis [22]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Activity [14]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [27]
Pro-epidermal growth factor (EGF) OTANRJ0L EGF_HUMAN Decreases Response To Substance [23]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Response To Substance [27]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Response To Substance [15]
Proheparin-binding EGF-like growth factor (HBEGF) OTLU00JS HBEGF_HUMAN Decreases Response To Substance [23]
Protransforming growth factor alpha (TGFA) OTPD1LL9 TGFA_HUMAN Decreases Response To Substance [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 45 DOT(s)
Indication(s) of Lapatinib
Disease Entry ICD 11 Status REF
Breast cancer 2C60-2C65 Approved [3]
Gastroesophageal junction adenocarcinoma 2B71 Approved [4]
Melanoma 2C30 Approved [4]
Lapatinib Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Erbb2 tyrosine kinase receptor (HER2) TT6EO5L ERBB2_HUMAN Inhibitor [29]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [29]
Eukaryotic elongation factor 2 kinase (eEF-2K) TT1QFLA EF2K_HUMAN Inhibitor [30]
------------------------------------------------------------------------------------
Lapatinib Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [31]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [32]
------------------------------------------------------------------------------------
Lapatinib Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [33]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [34]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [33]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [34]
------------------------------------------------------------------------------------
Lapatinib Interacts with 36 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Activity [35]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [36]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [37]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [37]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [37]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Activity [37]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [38]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Decreases Activity [35]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [39]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [40]
DNA topoisomerase 1 (TOP1) OT51O0CF TOP1_HUMAN Decreases Expression [41]
DNA topoisomerase 2-alpha (TOP2A) OT6LPS08 TOP2A_HUMAN Decreases Expression [41]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Expression [41]
Cyclin-A2 (CCNA2) OTPHHYZJ CCNA2_HUMAN Decreases Expression [39]
Phosphatidylcholine translocator ABCB4 (ABCB4) OTE6PY83 MDR3_HUMAN Decreases Activity [42]
Receptor tyrosine-protein kinase erbB-3 (ERBB3) OTRSST0A ERBB3_HUMAN Decreases Activity [43]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [21]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [35]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [39]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [39]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Activity [35]
DNA replication licensing factor MCM7 (MCM7) OT6FXC6K MCM7_HUMAN Decreases Expression [39]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [41]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [35]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [41]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [41]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [40]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [44]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Response To Substance [45]
HLA class II histocompatibility antigen, DQ alpha 1 chain (HLA-DQA1) OTC6GISG DQA1_HUMAN Increases ADR [46]
Zinc finger protein SNAI1 (SNAI1) OTDPYAMC SNAI1_HUMAN Decreases Response To Substance [47]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Increases Metabolism [41]
Cytochrome P450 3A7 (CYP3A7) OTTCDHHM CP3A7_HUMAN Increases Metabolism [41]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Response To Substance [47]
Tenascin-X (TNXB) OTVBWAV5 TENX_HUMAN Increases ADR [46]
HLA class II histocompatibility antigen, DQ beta 1 chain (HLA-DQB1) OTVVI3UI DQB1_HUMAN Increases ADR [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Chronic myelogenous leukemia DCO2IS8 K-562 Investigative [1]
Large cell lung carcinoma DCNGCN0 NCI-H460 Investigative [1]
Invasive ductal carcinoma DCV0NB6 T-47D Investigative [48]
------------------------------------------------------------------------------------

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4903).
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5692).
4 Lapatinib FDA Label
5 Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr Pharm Des. 2013;19(5):940-50.
6 Antitumor action of the MET tyrosine kinase inhibitor crizotinib (PF-02341066) in gastric cancer positive for MET amplification. Mol Cancer Ther. 2012 Jul;11(7):1557-64. doi: 10.1158/1535-7163.MCT-11-0934. Epub 2012 Jun 22.
7 Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal. 2012 Apr;24(4):852-8. doi: 10.1016/j.cellsig.2011.11.020. Epub 2011 Dec 8.
8 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
9 Met tyrosine kinase inhibitor, PF-2341066, suppresses growth and invasion of nasopharyngeal carcinoma.Drug Des Devel Ther. 2015 Aug 26;9:4897-907.
10 Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014 Mar 15;134(6):1484-94.
11 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
12 Crizotinib for the treatment of non-small-cell lung cancer. Am J Health Syst Pharm. 2013 Jun 1;70(11):943-7.
13 Prediction of crizotinib-midazolam interaction using the Simcyp population-based simulator: comparison of CYP3A time-dependent inhibition between human liver microsomes versus hepatocytes. Drug Metab Dispos. 2013 Feb;41(2):343-52.
14 Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci. 2017 Jun 1;157(2):500-509. doi: 10.1093/toxsci/kfx063.
15 Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med. 2012 Feb 8;4(120):120ra17. doi: 10.1126/scitranslmed.3003316. Epub 2012 Jan 25.
16 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
17 Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer. 2012 Nov 1;118(21):5302-9. doi: 10.1002/cncr.27450. Epub 2012 Apr 4.
18 Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011 Sep 22;54(18):6342-63. doi: 10.1021/jm2007613. Epub 2011 Aug 18.
19 ROS-dependent DNA damage contributes to crizotinib-induced hepatotoxicity via the apoptotic pathway. Toxicol Appl Pharmacol. 2019 Nov 15;383:114768. doi: 10.1016/j.taap.2019.114768. Epub 2019 Oct 19.
20 Elucidating mechanisms of toxicity using phenotypic data from primary human cell systems--a chemical biology approach for thrombosis-related side effects. Int J Mol Sci. 2015 Jan 5;16(1):1008-29. doi: 10.3390/ijms16011008.
21 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
22 Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7535-40. doi: 10.1073/pnas.1019559108. Epub 2011 Apr 18.
23 Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012 Jul 1;18(13):3592-602. doi: 10.1158/1078-0432.CCR-11-2972. Epub 2012 May 2.
24 Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011 Dec;78(6):999-1005. doi: 10.1111/j.1747-0285.2011.01239.x. Epub 2011 Oct 31.
25 Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem. 2020 Dec 25;295(52):18105-18121. doi: 10.1074/jbc.RA120.015891. Epub 2020 Oct 21.
26 Keratinocytes apoptosis contributes to crizotinib induced-erythroderma. Toxicol Lett. 2020 Feb 1;319:102-110. doi: 10.1016/j.toxlet.2019.11.007. Epub 2019 Nov 7.
27 Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012 Mar 1;18(5):1472-82. doi: 10.1158/1078-0432.CCR-11-2906. Epub 2012 Jan 10.
28 UGT-dependent regioselective glucuronidation of ursodeoxycholic acid and obeticholic acid and selective transport of the consequent acyl glucuronides by OATP1B1 and 1B3. Chem Biol Interact. 2019 Sep 1;310:108745. doi: 10.1016/j.cbi.2019.108745. Epub 2019 Jul 9.
29 Triple negative breast cancer--current status and prospective targeted treatment based on HER1 (EGFR), TOP2A and C-MYC gene assessment. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2009 Mar;153(1):13-7.
30 Inhibition of eEF-2 kinase sensitizes human nasopharyngeal carcinoma cells to lapatinib-induced apoptosis through the Src and Erk pathways.BMC Cancer. 2016 Oct 19;16(1):813.
31 Tarascon Pocket Pharmacopoeia 2018 Classic Shirt-Pocket Edition.
32 The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos. 2008 Apr;36(4):695-701.
33 Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010 Oct;78(4):693-703.
34 Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706.
35 The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res. 2005 Jan 1;65(1):18-25.
36 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
37 P450 3A-catalyzed O-dealkylation of lapatinib induces mitochondrial stress and activates Nrf2. Chem Res Toxicol. 2016 May 16;29(5):784-96.
38 Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene. 2005 Sep 15;24(41):6213-21. doi: 10.1038/sj.onc.1208774.
39 CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer. 2014 Jul;5(7-8):261-72. doi: 10.18632/genesandcancer.24.
40 Effects of lapatinib on cell proliferation and apoptosis in NB4 cells. Oncol Lett. 2018 Jan;15(1):235-242. doi: 10.3892/ol.2017.7342. Epub 2017 Nov 3.
41 The involvement of hepatic cytochrome P450s in the cytotoxicity of lapatinib. Toxicol Sci. 2023 Dec 21;197(1):69-78. doi: 10.1093/toxsci/kfad099.
42 Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals. Chem Res Toxicol. 2017 May 15;30(5):1219-1229. doi: 10.1021/acs.chemrestox.7b00048. Epub 2017 May 4.
43 Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin Cancer Res. 2009 Jun 15;15(12):4147-56. doi: 10.1158/1078-0432.CCR-08-2814. Epub 2009 Jun 9.
44 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
45 The K-Ras effector p38 MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem. 2017 Sep 8;292(36):15070-15079. doi: 10.1074/jbc.M117.779488. Epub 2017 Jul 24.
46 HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol. 2011 Feb 20;29(6):667-73. doi: 10.1200/JCO.2010.31.3197. Epub 2011 Jan 18.
47 Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol. 2016 Feb;71:12-23. doi: 10.1016/j.biocel.2015.11.014. Epub 2015 Nov 28.
48 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.